File size: 14,207 Bytes
2114261 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import pickle
import numpy as np
import os
import math
from scipy.signal import find_peaks
from matplotlib import pyplot as plt
def get_scale_factor(dive_data):
# distance between thorax and pelvis
distances = []
for pose_pred in dive_data['pose_pred']:
if pose_pred is not None:
distances.append(math.dist(pose_pred[0][6], pose_pred[0][7]))
distances.sort()
return np.median(distances)
def find_angle(vector1, vector2):
unit_vector_1 = vector1 / np.linalg.norm(vector1)
unit_vector_2 = vector2 / np.linalg.norm(vector2)
dot_product = np.dot(unit_vector_1, unit_vector_2)
angle = math.degrees(np.arccos(dot_product))
return angle
def is_back_facing(dive_data, board_side):
directions = []
for i in range(len(dive_data['pose_pred'])):
pose_pred = dive_data['pose_pred'][i]
if pose_pred is None or dive_data['above_boards'][i] == 0:
continue
pose_pred = pose_pred[0]
## left knee bend ###
l_knee = pose_pred[4]
l_ankle = pose_pred[5]
l_hip = pose_pred[3]
l_knee_ankle = [l_ankle[0] - l_knee[0], 0-(l_ankle[1] - l_knee[1])]
l_knee_hip = [l_hip[0] - l_knee[0], 0-(l_hip[1] - l_knee[1])]
l_direction = rotation_direction(l_knee_hip, l_knee_ankle)
## right knee bend ###
r_knee = pose_pred[1]
r_ankle = pose_pred[0]
r_hip = pose_pred[2]
r_knee_ankle = [r_ankle[0] - r_knee[0], 0-(r_ankle[1] - r_knee[1])]
r_knee_hip = [r_hip[0] - r_knee[0], 0-(r_hip[1] - r_knee[1])]
r_direction = rotation_direction(r_knee_hip, r_knee_ankle)
if l_direction == r_direction and l_direction != 0 and board_side == 'left':
# we're looking for more clockwise
return l_direction < 0
elif l_direction == r_direction and l_direction != 0:
# we're looking for more counterclockwise
return l_direction > 0
return False
def rotation_direction(vector1, vector2, threshold=0.4):
# Calculate the determinant to determine rotation direction
determinant = vector1[0] * vector2[1] - vector1[1] * vector2[0]
mag1= np.linalg.norm(vector1)
mag2= np.linalg.norm(vector2)
norm_det = determinant/(mag1*mag2)
# print("determinant", determinant/(mag1*mag2))
# print(norm_det)
if norm_det > threshold:
# return "counterclockwise"
return 1
elif norm_det < 0-threshold:
# return "clockwise"
return -1
else:
# return "not determinent"
return 0
def find_position(dive_data):
angles = []
three_in_a_row = 0
for i in range(1, len(dive_data['pose_pred'])):
pose_pred = dive_data['pose_pred'][i]
if pose_pred is None or dive_data['som'][i]==0:
continue
pose_pred = pose_pred[0]
l_knee = pose_pred[4]
l_ankle = pose_pred[5]
l_hip = pose_pred[3]
l_knee_ankle = [l_ankle[0] - l_knee[0], 0-(l_ankle[1] - l_knee[1])]
l_knee_hip = [l_hip[0] - l_knee[0], 0-(l_hip[1] - l_knee[1])]
angle = find_angle(l_knee_ankle, l_knee_hip)
angles.append(angle)
# print(angle)
if angle < 70:
three_in_a_row += 1
if three_in_a_row >=3:
return 'tuck'
else:
three_in_a_row =0
if twist_counter_full_dive(dive_data) > 0 and som_counter_full_dive(dive_data)[0] < 5:
return 'free'
return 'pike'
def distance_point_to_line_segment(px, py, x1, y1, x2, y2):
# Calculate the squared distance from point (px, py) to the line segment [(x1, y1), (x2, y2)]
def sqr_distance_point_to_segment():
line_length_sq = (x2 - x1)**2 + (y2 - y1)**2
if line_length_sq == 0:
return (px - x1)**2 + (py - y1)**2
t = max(0, min(1, ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / line_length_sq))
return ((px - (x1 + t * (x2 - x1)))**2 + (py - (y1 + t * (y2 - y1)))**2)
# Calculate the closest point on the line segment to the given point (px, py)
def closest_point_on_line_segment():
line_length_sq = (x2 - x1)**2 + (y2 - y1)**2
if line_length_sq == 0:
return x1, y1
t = max(0, min(1, ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / line_length_sq))
closest_x = x1 + t * (x2 - x1)
closest_y = y1 + t * (y2 - y1)
return closest_x, closest_y
closest_point = closest_point_on_line_segment()
distance = math.sqrt(sqr_distance_point_to_segment())
return closest_point, distance
def min_distance_from_line_to_circle(line_start, line_end, circle_center, circle_radius):
closest_point, distance = distance_point_to_line_segment(circle_center[0], circle_center[1],
line_start[0], line_start[1],
line_end[0], line_end[1])
min_distance = max(0, distance - circle_radius)
return min_distance
def twister(pose_pred, prev_pose_pred=None, in_petal=False, petal_count=0, outer=10, inner=9, valid=17, middle=0.5):
if pose_pred is None:
return petal_count, in_petal
min_dist = 0
# Users/lokamoto/Comprehensive_AQA/output/joint_plots/FINAWorldChampionships2019_Women10m_final_r1_0
pose_pred = pose_pred[0]
vector1 = [pose_pred[2][0] - pose_pred[3][0], 0-(pose_pred[2][1] - pose_pred[3][1])]
if prev_pose_pred is not None:
prev_pose_pred = prev_pose_pred[0]
prev_pose_pred = [prev_pose_pred[2][0] - prev_pose_pred[3][0], 0-(prev_pose_pred[2][1] - prev_pose_pred[3][1])]
min_dist = min_distance_from_line_to_circle(prev_pose_pred, vector1, (0, 0), middle)
if np.linalg.norm(vector1) > valid:
return petal_count, in_petal
if min_dist is not None and in_petal and np.linalg.norm(vector1) > outer and min_dist == 0: #and np.linalg.norm(vector1) > 8
petal_count += 1
# print('leaving petal')
# print('going in new petal')
elif not in_petal and np.linalg.norm(vector1) > outer: #and min_dist > 3: #and np.linalg.norm(vector1) > 8
in_petal = True
petal_count += 1
# print('going in petal')
elif in_petal and np.linalg.norm(vector1) < inner:
in_petal = False
# print('leaving petal')
# print(vector)
return petal_count, in_petal
def twist_counter_full_dive(dive_data, visualize=False):
twists_gt = []
twists_gt.extend(range(29, 36))
twists_gt.extend([41, 42])
start = [1, 2, 3, 4, 5, 6, 7]
# key = ('01',17)
# print(ground_truth[key][0])
# print(dive_data['twist_counts'])
dist_hip = []
prev_pose_pred = None
in_petal=False
petal_count=0
scale = get_scale_factor(dive_data)
valid = scale / 1.5
outer = scale / 3.2
inner = scale / 3.4
middle = 0.5
next_next_pose_pred = dive_data['pose_pred'][4]
# bad_poses = invalid_poses(key)
for i in range(len(dive_data['pose_pred'])):
# if ground_truth[key][4][i] not in twists_gt:
# continue
# if i in bad_poses:
# continue
pose_pred = dive_data['pose_pred'][i]
if i < len(dive_data['pose_pred']) - 1:
next_pose_pred = dive_data['pose_pred'][i + 1]
if i < len(dive_data['pose_pred']) - 4 and next_next_pose_pred is not None:
next_next_pose_pred = dive_data['pose_pred'][i + 4]
if pose_pred is None or dive_data['on_boards'][i] == 1 or dive_data['position_tightness'][i] <= 80 or next_next_pose_pred is None:
continue
petal_count, in_petal = twister(pose_pred, prev_pose_pred=prev_pose_pred, in_petal=in_petal, petal_count=petal_count, outer=outer, inner=inner, middle=middle, valid=valid)
prev_pose_pred = pose_pred
# print(petal_count)
if visualize:
pose_pred = pose_pred[0]
dist_hip.append([pose_pred[2][0] - pose_pred[3][0], 0-(pose_pred[2][1] - pose_pred[3][1])])
if visualize:
dist_hip = np.array(dist_hip)
plt.plot(dist_hip[:, 0], dist_hip[:, 1], label="right-to-left hip")
circle1 = plt.Circle((0, 0), outer, fill=False)
plt.gca().add_patch(circle1)
circle2 = plt.Circle((0, 0), inner, fill=False)
plt.gca().add_patch(circle2)
circle3 = plt.Circle((0, 0), valid, fill=False)
plt.gca().add_patch(circle3)
plt.legend()
plt.show()
return petal_count
def rotation_direction_som(vector1, vector2, threshold=0.4):
# Calculate the determinant to determine rotation direction
determinant = vector1[0] * vector2[1] - vector1[1] * vector2[0]
mag1= np.linalg.norm(vector1)
mag2= np.linalg.norm(vector2)
norm_det = determinant/(mag1*mag2)
theta = np.arcsin(norm_det)
return math.degrees(theta)
def is_handstand(dive_data):
first_frame_pose_pred = dive_data['pose_pred'][0]
handstand = False
if first_frame_pose_pred[0][6][1] < first_frame_pose_pred[0][7][1]:
handstand = True
return handstand
def som_counter_full_dive(dive_data, visualize=False):
start = [1, 2, 3, 4, 5, 6, 7]
entry = [36]
half_som_count = 0
# key = ('04', 47)
# print(ground_truth[key][0])
dist_body = []
handstand = is_handstand(dive_data)
# key = ('04',42)
next_next_pose_pred = dive_data['pose_pred'][2]
# bad_poses = invalid_poses(key)
prev = None
for i in range(len(dive_data['pose_pred'])):
# if i in bad_poses:
# continue
pose_pred = dive_data['pose_pred'][i]
if i < len(dive_data['pose_pred']) - 2 and next_next_pose_pred is not None:
next_next_pose_pred = dive_data['pose_pred'][i + 2]
if pose_pred is None or next_next_pose_pred is None or dive_data['on_boards'][i] == 1: # ground_truth[key][4][i] in start:
continue
pose_pred = pose_pred[0]
vector1 = [pose_pred[7][0] - pose_pred[6][0], 0-(pose_pred[7][1] - pose_pred[6][1])] # flip y axis
if (not handstand and half_som_count % 2 == 0) or (handstand and half_som_count % 2 == 1):
vector2 = [0, -1]
else:
vector2 = [0, 1]
sensitivity = 115
if prev is not None and find_angle(vector1, prev) > sensitivity:
continue
is_clockwise = is_rotating_clockwise(dive_data)
if prev is not None and ((is_clockwise and rotation_direction_som(vector1, prev)<0) or (not is_clockwise and rotation_direction_som(vector1, prev)>0)):
continue
angle = find_angle(vector1, vector2)
# print("unit_vector_1:", unit_vector_1)
# print("looking for vector:", vector2)
# print(half_som_count)
# print(angle)
if angle <= 75:
half_som_count += 1
if visualize:
dist_body.append([pose_pred[7][0] - pose_pred[6][0], 0-(pose_pred[7][1] - pose_pred[6][1])])
prev = vector1
if visualize:
dist_body = np.array(dist_body)
plt.plot(dist_body[:, 0], dist_body[:, 1], label="pelvis-to-thorax")
plt.xlabel("x-coord")
plt.ylabel("y-coord")
plt.legend()
plt.show()
return half_som_count, handstand
def getDiveInfo(diveNum):
handstand = (diveNum[0] == '6')
expected_som = int(diveNum[2])
if len(diveNum) == 5:
expected_twists = int(diveNum[3])
else:
expected_twists = 0
if diveNum[0] == '1' or diveNum[0] == '3' or diveNum[:2] == '51' or diveNum[:2] == '53' or diveNum[:2] == '61' or diveNum[:2] == '63':
back_facing = False
else:
back_facing = True
if diveNum[0] == '1' or diveNum[:2] == '51' or diveNum[:2] == '61':
expected_direction = 'front'
elif diveNum[0] == '2' or diveNum[:2] == '52' or diveNum[:2] == '62':
expected_direction = 'back'
elif diveNum[0] == '3' or diveNum[:2] == '53' or diveNum[:2] == '63':
expected_direction = 'reverse'
elif diveNum[0] == '4':
expected_direction = 'inward'
if diveNum[-1] == 'b':
position = 'pike'
elif diveNum[-1] == 'c':
position = 'tuck'
else:
position = 'free'
return handstand, expected_som, expected_twists, back_facing, expected_direction, position
def get_direction(dive_data):
clockwise = is_rotating_clockwise(dive_data)
board_side = dive_data['board_side']
if board_side == "right":
back_facing = is_back_facing(dive_data, 'right')
if back_facing and clockwise:
direction = 'inward'
elif back_facing and not clockwise:
direction = 'back'
elif not back_facing and clockwise:
direction = 'reverse'
elif not back_facing and not clockwise:
direction = 'front'
else:
back_facing = is_back_facing(dive_data, 'left')
if back_facing and clockwise:
direction = 'back'
elif back_facing and not clockwise:
direction = 'inward'
elif not back_facing and clockwise:
direction = 'front'
elif not back_facing and not clockwise:
direction = 'reverse'
return direction
def is_rotating_clockwise(dive_data):
directions = []
for i in range(1, len(dive_data['pose_pred'])):
if dive_data['pose_pred'][i] is None or dive_data['pose_pred'][i-1] is None:
continue
if dive_data['on_boards'][i] == 0:
prev_pose_pred_hip = dive_data['pose_pred'][i-1][0][3]
curr_pose_pred_hip = dive_data['pose_pred'][i][0][3]
prev_pose_pred_knee = dive_data['pose_pred'][i-1][0][4]
curr_pose_pred_knee = dive_data['pose_pred'][i][0][4]
prev_hip_knee = [prev_pose_pred_knee[0] - prev_pose_pred_hip[0], 0-(prev_pose_pred_knee[1] - prev_pose_pred_hip[1])]
curr_hip_knee = [curr_pose_pred_knee[0] - curr_pose_pred_hip[0], 0-(curr_pose_pred_knee[1] - curr_pose_pred_hip[1])]
direction = rotation_direction(prev_hip_knee, curr_hip_knee, threshold=0)
directions.append(direction)
return np.sum(directions) < 0
|