File size: 11,734 Bytes
7b7e262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from microprograms.temporal_segmentation.entry import entry_microprogram_one_frame
from microprograms.temporal_segmentation.somersault import somersault_microprogram_one_frame
from microprograms.temporal_segmentation.twist import twist_microprogram_one_frame
from microprograms.temporal_segmentation.start_takeoff import takeoff_microprogram_one_frame
from microprograms.errors.distance_from_springboard_micro_program import board_end
from microprograms.errors.splash_micro_program import get_splash_from_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_springboard_for_one_frame
from microprograms.errors.distance_from_springboard_micro_program import calculate_distance_from_platform_for_one_frame
from microprograms.errors.angles_micro_programs import applyFeetApartError
from microprograms.errors.angles_micro_programs import applyPositionTightnessError
from models.detectron2.platform_detector_setup import get_platform_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_estimation
from models.detectron2.diver_detector_setup import get_diver_detector
from models.pose_estimator.pose_estimator_model_setup import get_pose_model
from models.detectron2.splash_detector_setup import get_splash_detector
from somersault_counter import som_counter, twist_counter
from microprograms.errors.over_rotation import over_rotation
import pickle
import os
import math
import numpy as np
import cv2

# returns None if either pose_pred or board_end_coord is None
# returns True if diver is on board, returns False if diver is off board
def detect_on_board(board_end_coord, board_side, pose_pred, handstand):
    if pose_pred is None:
        print("pose_pred is None")
        return
    if board_end_coord is None:
        print("board end coord is None")
        return
    # side = find_which_side_board_on(outputs)
    if board_side == 'left':
        # if right of board end
        if np.array(pose_pred)[0][2][0] > int(board_end_coord[0]):
            # print("board on left side, we're saying that the diver is on the right")
            # if standing_dive:
            if handstand:
                # print("board end to wrist dist:", math.dist(np.array(pose_pred)[0][15], board_end_coord))
                # print("wrist to elbow dist:", math.dist(np.array(pose_pred)[0][14], np.array(pose_pred)[0][15]))
                distance = math.dist(np.array(pose_pred)[0][15], board_end_coord) < math.dist(np.array(pose_pred)[0][14], np.array(pose_pred)[0][15]) * 1.5
            else:
                # print("board end to ankle dist:", math.dist(np.array(pose_pred)[0][5], board_end_coord))
                # print("ankle to knee dist:", math.dist(np.array(pose_pred)[0][5], np.array(pose_pred)[0][4]))
                distance = math.dist(np.array(pose_pred)[0][5], board_end_coord) < math.dist(np.array(pose_pred)[0][5], np.array(pose_pred)[0][4]) * 1.5
            
            # print("distance", distance)
            return distance
            # return False
        # if left of board end
        else:
            # print("board on left side, we're saying that the diver is on the left")
            return True
    else:
        # if right of board end
        if np.array(pose_pred)[0][2][0] > int(board_end_coord[0]):
            # print("board on right side, we're saying that the diver is on the right")
            return True
        # if left of board end
        else:
            # print("board on right side, we're saying that the diver is on the left")
            # if standing_dive:
            if handstand:
                distance = math.dist(np.array(pose_pred)[0][10], board_end_coord) < math.dist(np.array(pose_pred)[0][11], np.array(pose_pred)[0][10]) * 1.5
            else:
                distance = math.dist(np.array(pose_pred)[0][0], board_end_coord) < math.dist(np.array(pose_pred)[0][1], np.array(pose_pred)[0][0]) * 1.5
            # print("distance", distance)
            return distance
            # return False

def main():
    first_folder = input("what is the first folder? Ex: 01, FINAWorldChampionships2019_Women10m_final_r1, etc. ")
    second_folder = input("what is the second folder? (dive within the first folder)")
    takeoff = []
    twist = []
    som = []
    entry = []
    distance_from_board = []
    position_tightness = []
    feet_apart = []
    splash = []
    above_board = True
    board_side = input("what side is the board on? type either 'left' or 'right'")
    on_board = True
    handstand = input("is the dive a handstand dive? type either 'True' or 'False' ") == 'True'
    expected_twists = int(input("what are the expected number of twists? type 1 for half a twist, 2 for full twist, etc."))
    expected_som = int(input("what are the expected number of somersaults? type 1 for half a somersault, 2 for full somersault, etc."))
    # expected_twists= 0
    # expected_som = 7
    platform_detector = get_platform_detector()
    splash_detector = get_splash_detector()
    diver_detector = get_diver_detector()
    pose_model = get_pose_model()
    dive_folder_num = "{}_{}".format(first_folder, second_folder)
    directory = './FineDiving/datasets/FINADiving_MTL_256s/{}/{}/'.format(first_folder, second_folder)
    # dive_folder_num = '01_1'
    # directory = './FineDiving/datasets/FINADiving_MTL_256s/01/1/'
    # dive_folder_num = 'FINAWorldChampionships2019_Women10m_final_r1_0'
    # directory = './FineDiving/datasets/FINADiving_MTL_256s/FINAWorldChampionships2019_Women10m_final_r1/0/'
    file_names = os.listdir(directory)
    # with open('./output/joint_plots/{}/pose_preds.pkl'.format(dive_folder_num), 'rb') as pickle_file:
    #     pose_preds = pickle.load(pickle_file)
    j = 0
    # if len(pose_preds) > len(file_names):
    #     print("WRONG POSE_PREDS")
    prev_pred = None
    som_prev_pred =None
    half_som_count=0
    petal_count = 0
    in_petal = False
    for i in range(len(file_names)):
        # pose_pred = None
        filepath = directory + file_names[i]
        print("filepath:", filepath)
        if file_names[i][-4:] != ".jpg":
            continue
        diver_box, pose_pred = get_pose_estimation(filepath, diver_detector=diver_detector, pose_model=pose_model)
        # if j < len(pose_preds):
        #     print("filepath has pose_pred:", filepath)
        #     pose_pred = pose_preds[j]
        #     j += 1
        calculated_half_som_count, skip = som_counter(pose_pred, som_prev_pred, half_som_count=half_som_count, handstand=handstand)
        if not skip:
            som_prev_pred = pose_pred
        print("calculated_half_som_count:", calculated_half_som_count)
        calculated_petal_count, calculated_in_petal = twist_counter(pose_pred, prev_pose_pred=prev_pred, in_petal=in_petal, petal_count=petal_count)
        print("calculated_petal_count", calculated_petal_count)
        print("calculated_in_petal", calculated_in_petal)
        im = cv2.imread(filepath)
        outputs = platform_detector(im)
        board_end_coord = board_end(outputs, board_side=board_side)
        # if board_end_coord is None:
        #     print("NO BOARD NONE CRYING")
        if above_board and not on_board and board_end_coord is not None and pose_pred is not None and np.array(pose_pred)[0][2][1] > int(board_end_coord[1]):
            above_board=False
        if on_board and detect_on_board(board_end_coord, board_side, pose_pred, handstand) is not None and not detect_on_board(board_end_coord, board_side, pose_pred, handstand):
            on_board = False
        print('ON_BOARD:', on_board)
        print('ABOVE_BOARD:', above_board)
        calculated_takeoff = takeoff_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred)
        calculated_twist = twist_microprogram_one_frame(filepath, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count)
        calculated_som = somersault_microprogram_one_frame(filepath, pose_pred=pose_pred, on_board=on_board, expected_som=expected_som, half_som_count=half_som_count, expected_twists=expected_twists, petal_count=petal_count)
        calculated_entry = entry_microprogram_one_frame(filepath, above_board=above_board, on_board=on_board, pose_pred=pose_pred, expected_twists=expected_twists, petal_count=petal_count, expected_som=expected_som, half_som_count=half_som_count, splash_detector=splash_detector, visualize=True, dive_folder_num=dive_folder_num)
        if calculated_takeoff == 1:
            # distance from board
            dist = calculate_distance_from_platform_for_one_frame(filepath, visualize=False, pose_pred=pose_pred, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
            distance_from_board.append(dist)
            # height off board
            # height_off_board.append(dist)
            # proximity to the edge of board
            # proximity_to_end_board.append(dist)
        elif calculated_som == 1:
            half_som_count = calculated_half_som_count
            # petal_count = calculated_petal_count
            # in_petal = calculated_in_petal
            if above_board:
                dist = calculate_distance_from_platform_for_one_frame(filepath, visualize=False, pose_pred=pose_pred, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
                # distance from board
                distance_from_board.append(dist)
            # rotation speed
            # position tightness
            position_tightness.append(applyPositionTightnessError(filepath, pose_pred=pose_pred))
            # feet flat
            # feet/legs apart
            feet_apart.append(applyFeetApartError(filepath, pose_pred=pose_pred))
        elif calculated_twist == 1:
            half_som_count = calculated_half_som_count
            petal_count = calculated_petal_count
            in_petal = calculated_in_petal
            if above_board:
                dist = calculate_distance_from_platform_for_one_frame(filepath, visualize=False, pose_pred=pose_pred, board_end_coord=board_end_coord, platform_detector=platform_detector) # saves photo to ./output/data/distance_from_board/
                # distance from board
                distance_from_board.append(dist)
            # twisting speed
            # position tightness
            position_tightness.append(180 - applyPositionTightnessError(filepath, pose_pred=pose_pred))
            # feet flat
            # feet/legs apart
            feet_apart.append(applyFeetApartError(filepath, pose_pred=pose_pred))
        elif calculated_entry == 1:
            # over/under twisting
            # over/under rotating
            print("OVER-ROTATION ERROR:", over_rotation(filepath, pose_pred=pose_pred, diver_detector=diver_detector, pose_model=pose_model))
            # not straight during entry
            # splash
            splash.append(get_splash_from_one_frame(filepath, predictor=splash_detector, visualize=True))
        else:
            print('no phase of dive calculated!')
        takeoff.append(calculated_takeoff)
        twist.append(calculated_twist)
        som.append(calculated_som)
        entry.append(calculated_entry)
        prev_pred = pose_pred
    print("takeoff", takeoff)
    print("twist", twist)
    print("som", som)
    print("entry", entry)
    print("distance_from_board", distance_from_board)
    print("position_tightness", position_tightness)
    print("feet_apart", feet_apart)
    print("splash", splash)


if __name__ == "__main__":
    main()