File size: 6,695 Bytes
177346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0498520
177346c
 
 
 
 
 
 
 
 
 
 
0498520
177346c
 
0498520
177346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9825a89
177346c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from PIL import Image
import requests
import matplotlib.pyplot as plt
import numpy as np

import torch
import torchvision.transforms as T
import os
import random
import cv2
import DETR.util.misc as utils
from DETR.models import build_model
from DETR.modules.ExplanationGenerator import Generator
import argparse


class Namespace:
    def __init__(self, **kwargs):
        self.__dict__.update(kwargs)


# COCO classes
CLASSES = [
    'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
    'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
    'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
    'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack',
    'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
    'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
    'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass',
    'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
    'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
    'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A',
    'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard',
    'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A',
    'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier',
    'toothbrush'
]

# colors for visualization
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
          [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]

# standard PyTorch mean-std input image normalization
transform = T.Compose([
    T.Resize(800),
    T.ToTensor(),
    T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])


# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
    x_c, y_c, w, h = x.unbind(1)
    b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
         (x_c + 0.5 * w), (y_c + 0.5 * h)]
    return torch.stack(b, dim=1)


def rescale_bboxes(out_bbox, size):
    img_w, img_h = size
    b = box_cxcywh_to_xyxy(out_bbox)
    b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
    return b


def plot_results(pil_img, prob, boxes):
    plt.figure(figsize=(16, 10))
    plt.imshow(pil_img)
    ax = plt.gca()
    colors = COLORS * 100
    for p, (xmin, ymin, xmax, ymax), c in zip(prob, boxes.tolist(), colors):
        ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,
                                   fill=False, color=c, linewidth=3))
        cl = p.argmax()
        text = f'{CLASSES[cl]}: {p[cl]:0.2f}'
        ax.text(xmin, ymin, text, fontsize=15,
                bbox=dict(facecolor='yellow', alpha=0.5))
    plt.axis('off')
    plt.show()




device = 'cpu'
args = Namespace(aux_loss=True, backbone='resnet50', batch_size=2, bbox_loss_coef=5, clip_max_norm=0.1,
                 coco_panoptic_path=None, coco_path=None, dataset_file='coco', dec_layers=6, device='cpu',
                 dice_loss_coef=1, dilation=False, dim_feedforward=2048, dist_url='env://', distributed=False,
                 dropout=0.1, enc_layers=6, eos_coef=0.1, epochs=300, eval=False, frozen_weights=None, giou_loss_coef=2,
                 hidden_dim=256, lr=0.0001, lr_backbone=1e-05, lr_drop=200, mask_loss_coef=1, masks=False, nheads=8,
                 num_queries=100, num_workers=2, output_dir='', position_embedding='sine', pre_norm=False,
                 remove_difficult=False, resume='https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth', seed=42,
                 set_cost_bbox=5, set_cost_class=1, set_cost_giou=2, start_epoch=0, weight_decay=0.0001, world_size=1)
model, criterion, postprocessors = build_model(args)
model.to(device)
checkpoint = torch.hub.load_state_dict_from_url(
    args.resume, map_location='cpu', check_hash=True)
model.load_state_dict(checkpoint['model'], strict=False)
gen = Generator(model)


def evaluate(im, device, image_id=None):
    # mean-std normalize the input image (batch-size: 1)
    im1 = transform(im)
    img = transform(im).unsqueeze(0).to(device)

    # propagate through the model
    outputs = model(img)

    # keep only predictions with 0.7+ confidence
    probas = outputs['pred_logits'].softmax(-1)[0, :, :-1]
    keep = probas.max(-1).values > 0.9
    keep = keep.cpu()

    if keep.nonzero().shape[0] <= 1:
        return

    outputs['pred_boxes'] = outputs['pred_boxes'].cpu()

    # convert boxes from [0; 1] to image scales
    bboxes_scaled = rescale_bboxes(outputs['pred_boxes'][0, keep], im.size)

    # use lists to store the outputs via up-values
    conv_features, enc_attn_weights, dec_attn_weights = [], [], []

    hooks = [
        model.backbone[-2].register_forward_hook(
            lambda self, input, output: conv_features.append(output)
        ),
        # model.transformer.encoder.layers[-1].self_attn.register_forward_hook(
        #     lambda self, input, output: enc_attn_weights.append(output[1])
        # ),
        model.transformer.decoder.layers[-1].multihead_attn.register_forward_hook(
            lambda self, input, output: dec_attn_weights.append(output[1])
        ),
    ]

    for layer in model.transformer.encoder.layers:
        hook = layer.self_attn.register_forward_hook(
            lambda self, input, output: enc_attn_weights.append(output[1])
        )
        hooks.append(hook)

    model(img)

    for hook in hooks:
        hook.remove()

    # don't need the list anymore
    conv_features = conv_features[0]
    enc_attn_weights = enc_attn_weights[-1]
    dec_attn_weights = dec_attn_weights[0]

    # get the feature map shape
    h, w = conv_features['0'].tensors.shape[-2:]
    img_np = np.array(im).astype(float)

    fig, axs = plt.subplots(ncols=len(bboxes_scaled), nrows=2, figsize=(22, 7))
    for idx, ax_i, (xmin, ymin, xmax, ymax) in zip(keep.nonzero(), axs.T, bboxes_scaled):
        ax = ax_i[0]
        cam = gen.generate_ours(img, idx, use_lrp=True)
        cam = (cam - cam.min()) / (cam.max() - cam.min())
        # cmap = plt.cm.get_cmap('Blues').reversed()
        ax.imshow(cam.view(h, w).data.cpu().numpy())
        ax.axis('off')
        # ax.set_title(f'query id: {idx.item()}')
        ax = ax_i[1]
        ax.imshow(im)
        ax.add_patch(
            plt.Rectangle((xmin.detach(), ymin.detach()), xmax.detach() - xmin.detach(), ymax.detach() - ymin.detach(),
                          fill=False, color='blue', linewidth=3))
        ax.axis('off')
        ax.set_title(CLASSES[probas[idx].argmax()])
    id_str = '' if image_id == None else image_id
    fig.tight_layout()
    plt.savefig('detr.png')
    return fig