Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,213 Bytes
37aeb5b 5a3e910 37aeb5b 5a3e910 37aeb5b 7d9d29e 37aeb5b 4146293 69ac8ac 37aeb5b 69ac8ac 531ccc1 69ac8ac 531ccc1 69ac8ac 37aeb5b 9c1b518 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import os
from PIL import Image
from scripts.mesh_init import build_mesh, calc_w_over_h, fix_border_with_pymeshlab_fast
from scripts.project_mesh import multiview_color_projection
from scripts.refine_lr_to_sr import run_sr_fast
from scripts.utils import simple_clean_mesh
from gradio_app.utils import simple_remove, split_image
from gradio_app.custom_models.normal_prediction import predict_normals
from mesh_reconstruction.recon import reconstruct_stage1
from mesh_reconstruction.refine import run_mesh_refine
from scripts.project_mesh import get_cameras_list
from scripts.utils import from_py3d_mesh, to_pyml_mesh
from pytorch3d.structures import Meshes, join_meshes_as_scene
import numpy as np
def fast_geo(front_normal: Image.Image, back_normal: Image.Image, side_normal: Image.Image, clamp=0., init_type="std"):
if front_normal.mode == "RGB":
front_normal = simple_remove(front_normal, run_sr=False)
front_normal = front_normal.resize((192, 192))
if back_normal.mode == "RGB":
back_normal = simple_remove(back_normal, run_sr=False)
back_normal = back_normal.resize((192, 192))
if side_normal.mode == "RGB":
side_normal = simple_remove(side_normal, run_sr=False)
side_normal = side_normal.resize((192, 192))
# build mesh with front back projection # ~3s
side_w_over_h = calc_w_over_h(side_normal)
mesh_front = build_mesh(front_normal, front_normal, clamp_min=clamp, scale=side_w_over_h, init_type=init_type)
mesh_back = build_mesh(back_normal, back_normal, is_back=True, clamp_min=clamp, scale=side_w_over_h, init_type=init_type)
meshes = join_meshes_as_scene([mesh_front, mesh_back])
meshes = fix_border_with_pymeshlab_fast(meshes, poissson_depth=6, simplification=2000)
return meshes
def refine_rgb(rgb_pils, front_pil):
from scripts.refine_lr_to_sr import refine_lr_with_sd
from scripts.utils import NEG_PROMPT
from gradio_app.utils import make_image_grid
from gradio_app.all_models import model_zoo
from gradio_app.utils import rgba_to_rgb
rgb_pil = make_image_grid(rgb_pils, rows=2)
prompt = "4views, multiview"
neg_prompt = NEG_PROMPT
control_image = rgb_pil.resize((1024, 1024))
refined_rgb = refine_lr_with_sd([rgb_pil], [rgba_to_rgb(front_pil)], [control_image], prompt_list=[prompt], neg_prompt_list=[neg_prompt], pipe=model_zoo.pipe_disney_controlnet_tile_ipadapter_i2i, strength=0.2, output_size=(1024, 1024))[0]
refined_rgbs = split_image(refined_rgb, rows=2)
return refined_rgbs
def erode_alpha(img_list):
out_img_list = []
for idx, img in enumerate(img_list):
arr = np.array(img)
alpha = (arr[:, :, 3] > 127).astype(np.uint8)
# erode 1px
import cv2
alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
alpha = (alpha * 255).astype(np.uint8)
img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1))
out_img_list.append(img)
return out_img_list
def geo_reconstruct(rgb_pils, normal_pils, front_pil, do_refine=False, predict_normal=True, expansion_weight=0.1, init_type="std"):
if front_pil.size[0] <= 512:
front_pil = run_sr_fast([front_pil])[0]
if do_refine:
refined_rgbs = refine_rgb(rgb_pils, front_pil) # 6s
else:
refined_rgbs = [rgb.resize((512, 512), resample=Image.LANCZOS) for rgb in rgb_pils]
img_list = [front_pil] + run_sr_fast(refined_rgbs[1:])
if predict_normal:
rm_normals = predict_normals([img.resize((512, 512), resample=Image.LANCZOS) for img in img_list], guidance_scale=1.5)
else:
rm_normals = simple_remove([img.resize((512, 512), resample=Image.LANCZOS) for img in normal_pils])
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
if idx == 0 and img_list[0].mode == "RGBA":
temp = img_list[0].resize((2048, 2048))
rm_normals[0] = Image.fromarray(np.concatenate([np.array(rm_normals[0])[:, :, :3], np.array(temp)[:, :, 3:4]], axis=-1))
continue
img_list[idx] = Image.fromarray(np.concatenate([np.array(img_list[idx]), np.array(img)[:, :, 3:4]], axis=-1))
assert img_list[0].mode == "RGBA"
assert np.mean(np.array(img_list[0])[..., 3]) < 250
img_list = [img_list[0]] + erode_alpha(img_list[1:])
normal_stg1 = [img.resize((512, 512)) for img in rm_normals]
if init_type in ["std", "thin"]:
meshes = fast_geo(normal_stg1[0], normal_stg1[2], normal_stg1[1], init_type=init_type)
_ = multiview_color_projection(meshes, rgb_pils, resolution=512, device="cuda", complete_unseen=False, confidence_threshold=0.1) # just check for validation, may throw error
vertices, faces, _ = from_py3d_mesh(meshes)
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, vertices=vertices, faces=faces, start_edge_len=0.1, end_edge_len=0.02, gain=0.05, return_mesh=False, loss_expansion_weight=expansion_weight)
elif init_type in ["ball"]:
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, end_edge_len=0.01, return_mesh=False, loss_expansion_weight=expansion_weight)
normal_stg2 = [img.resize((1024, 1024)) for img in rm_normals] # reduce computation on huggingface demo, use 1024 instead of 2048
vertices, faces = run_mesh_refine(vertices, faces, normal_stg2, steps=100, start_edge_len=0.02, end_edge_len=0.005, decay=0.99, update_normal_interval=20, update_warmup=5, return_mesh=False, process_inputs=False, process_outputs=False)
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=1, apply_sub_divide=True, sub_divide_threshold=0.25).to("cuda")
new_meshes = multiview_color_projection(meshes, img_list, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([0, 90, 180, 270], "cuda", focal=1))
return new_meshes
########################
import spaces
@spaces.GPU(duration=100)
def geo_reconstruct_part1(rgb_pils, normal_pils, front_pil, do_refine=False, predict_normal=True, expansion_weight=0.1, init_type="std"):
if front_pil.size[0] <= 512:
front_pil = run_sr_fast([front_pil])[0]
if do_refine:
refined_rgbs = refine_rgb(rgb_pils, front_pil) # 6s
else:
refined_rgbs = [rgb.resize((512, 512), resample=Image.LANCZOS) for rgb in rgb_pils]
img_list = [front_pil] + run_sr_fast(refined_rgbs[1:])
if predict_normal:
rm_normals = predict_normals([img.resize((512, 512), resample=Image.LANCZOS) for img in img_list], guidance_scale=1.5)
else:
rm_normals = simple_remove([img.resize((512, 512), resample=Image.LANCZOS) for img in normal_pils])
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
if idx == 0 and img_list[0].mode == "RGBA":
temp = img_list[0].resize((2048, 2048))
rm_normals[0] = Image.fromarray(np.concatenate([np.array(rm_normals[0])[:, :, :3], np.array(temp)[:, :, 3:4]], axis=-1))
continue
img_list[idx] = Image.fromarray(np.concatenate([np.array(img_list[idx]), np.array(img)[:, :, 3:4]], axis=-1))
assert img_list[0].mode == "RGBA"
assert np.mean(np.array(img_list[0])[..., 3]) < 250
img_list = [img_list[0]] + erode_alpha(img_list[1:])
normal_stg1 = [img.resize((512, 512)) for img in rm_normals]
if init_type in ["std", "thin"]:
meshes = fast_geo(normal_stg1[0], normal_stg1[2], normal_stg1[1], init_type=init_type)
_ = multiview_color_projection(meshes, rgb_pils, resolution=512, device="cuda", complete_unseen=False, confidence_threshold=0.1) # just check for validation, may throw error
vertices, faces, _ = from_py3d_mesh(meshes)
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, vertices=vertices, faces=faces, start_edge_len=0.1, end_edge_len=0.02, gain=0.05, return_mesh=False, loss_expansion_weight=expansion_weight)
elif init_type in ["ball"]:
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, end_edge_len=0.01, return_mesh=False, loss_expansion_weight=expansion_weight)
normal_stg2 = [img.resize((1024, 1024)) for img in rm_normals] # reduce computation on huggingface demo, use 1024 instead of 2048
vertices, faces = run_mesh_refine(vertices, faces, normal_stg2, steps=100, start_edge_len=0.02, end_edge_len=0.005, decay=0.99, update_normal_interval=20, update_warmup=5, return_mesh=False, process_inputs=False, process_outputs=False)
return vertices, faces, img_list
# no GPU
def geo_reconstruct_part2(vertices, faces):
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=1, apply_sub_divide=True, sub_divide_threshold=0.25)
return meshes
@spaces.GPU(duration=100)
def geo_reconstruct_part3(meshes, img_list):
meshes = meshes.to("cuda")
new_meshes = multiview_color_projection(meshes, img_list, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([0, 90, 180, 270], "cuda", focal=1))
return new_meshes.to("cpu")
|