Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,253 Bytes
37aeb5b 8ff80ab 37aeb5b 7ad05d0 37aeb5b 94285bf 6ade74b 94285bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# modified from https://github.com/Profactor/continuous-remeshing
import nvdiffrast.torch as dr
import torch
from typing import Tuple
def _warmup(glctx, device=None):
device = 'cuda' if device is None else device
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
def tensor(*args, **kwargs):
return torch.tensor(*args, device=device, **kwargs)
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
tri = tensor([[0, 1, 2]], dtype=torch.int32)
dr.rasterize(glctx, pos, tri, resolution=[256, 256])
class NormalsRenderer:
_glctx:dr.RasterizeCudaContext = None
def __init__(
self,
mv: torch.Tensor, #C,4,4
proj: torch.Tensor, #C,4,4
image_size: Tuple[int,int],
mvp = None,
device=None,
):
if mvp is None:
self._mvp = proj @ mv #C,4,4
else:
self._mvp = mvp
self._image_size = image_size
self._glctx = dr.RasterizeCudaContext(device=device)
_warmup(self._glctx, device)
def render(self,
vertices: torch.Tensor, #V,3 float
normals: torch.Tensor, #V,3 float in [-1, 1]
faces: torch.Tensor, #F,3 long
) ->torch.Tensor: #C,H,W,4
V = vertices.shape[0]
faces = faces.type(torch.int32)
vert_hom = torch.cat((vertices, torch.ones(V,1,device=vertices.device)),axis=-1) #V,3 -> V,4
vertices_clip = vert_hom @ self._mvp.transpose(-2,-1) #C,V,4
rast_out,_ = dr.rasterize(self._glctx, vertices_clip, faces, resolution=self._image_size, grad_db=False) #C,H,W,4
vert_col = (normals+1)/2 #V,3
col,_ = dr.interpolate(vert_col, rast_out, faces) #C,H,W,3
alpha = torch.clamp(rast_out[..., -1:], max=1) #C,H,W,1
col = torch.concat((col,alpha),dim=-1) #C,H,W,4
col = dr.antialias(col, rast_out, vertices_clip, faces) #C,H,W,4
return col #C,H,W,4
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.renderer import (
RasterizationSettings,
MeshRendererWithFragments,
TexturesVertex,
MeshRasterizer,
BlendParams,
FoVOrthographicCameras,
look_at_view_transform,
hard_rgb_blend,
)
class VertexColorShader(ShaderBase):
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
blend_params = kwargs.get("blend_params", self.blend_params)
texels = meshes.sample_textures(fragments)
return hard_rgb_blend(texels, fragments, blend_params)
def render_mesh_vertex_color(mesh, cameras, H, W, blur_radius=0.0, faces_per_pixel=1, bkgd=(0., 0., 0.), dtype=torch.float32, device="cuda"):
if len(mesh) != len(cameras):
if len(cameras) % len(mesh) == 0:
mesh = mesh.extend(len(cameras))
else:
raise NotImplementedError()
# render requires everything in float16 or float32
input_dtype = dtype
blend_params = BlendParams(1e-4, 1e-4, bkgd)
# Define the settings for rasterization and shading
raster_settings = RasterizationSettings(
image_size=(H, W),
blur_radius=blur_radius,
faces_per_pixel=faces_per_pixel,
clip_barycentric_coords=True,
bin_size=None,
max_faces_per_bin=500000,
)
# Create a renderer by composing a rasterizer and a shader
# We simply render vertex colors through the custom VertexColorShader (no lighting, materials are used)
renderer = MeshRendererWithFragments(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=VertexColorShader(
device=device,
cameras=cameras,
blend_params=blend_params
)
)
# render RGB and depth, get mask
with torch.autocast(dtype=input_dtype, device_type=torch.device(device).type):
images, _ = renderer(mesh)
return images # BHW4
class Pytorch3DNormalsRenderer:
def __init__(self, cameras, image_size, device):
self.cameras = cameras.to(device)
self._image_size = image_size
self.device = device
def render(self,
vertices: torch.Tensor, #V,3 float
normals: torch.Tensor, #V,3 float in [-1, 1]
faces: torch.Tensor, #F,3 long
) ->torch.Tensor: #C,H,W,4
mesh = Meshes(verts=[vertices], faces=[faces], textures=TexturesVertex(verts_features=[(normals + 1) / 2])).to(self.device)
return render_mesh_vertex_color(mesh, self.cameras, self._image_size[0], self._image_size[1], device=self.device)
def save_tensor_to_img(tensor, save_dir):
from PIL import Image
import numpy as np
for idx, img in enumerate(tensor):
img = img[..., :3].cpu().numpy()
img = (img * 255).astype(np.uint8)
img = Image.fromarray(img)
img.save(save_dir + f"{idx}.png")
if __name__ == "__main__":
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from mesh_reconstruction.func import make_star_cameras_orthographic, make_star_cameras_orthographic_py3d
cameras = make_star_cameras_orthographic_py3d([0, 270, 180, 90], device="cuda", focal=1., dist=4.0)
mv,proj = make_star_cameras_orthographic(4, 1)
resolution = 1024
renderer1 = NormalsRenderer(mv,proj, [resolution,resolution], device="cuda")
renderer2 = Pytorch3DNormalsRenderer(cameras, [resolution,resolution], device="cuda")
vertices = torch.tensor([[0,0,0],[0,0,1],[0,1,0],[1,0,0]], device="cuda", dtype=torch.float32)
normals = torch.tensor([[-1,-1,-1],[1,-1,-1],[-1,-1,1],[-1,1,-1]], device="cuda", dtype=torch.float32)
faces = torch.tensor([[0,1,2],[0,1,3],[0,2,3],[1,2,3]], device="cuda", dtype=torch.long)
import time
t0 = time.time()
r1 = renderer1.render(vertices, normals, faces)
print("time r1:", time.time() - t0)
t0 = time.time()
r2 = renderer2.render(vertices, normals, faces)
print("time r2:", time.time() - t0)
for i in range(4):
print((r1[i]-r2[i]).abs().mean(), (r1[i]+r2[i]).abs().mean()) |