File size: 6,270 Bytes
37aeb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff80ab
37aeb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
8ff80ab
37aeb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94285bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ade74b
94285bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# modified from https://github.com/Profactor/continuous-remeshing
import nvdiffrast.torch as dr
import torch
from typing import Tuple

def _warmup(glctx, device=None):
    device = 'cuda' if device is None else device
    #windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
    def tensor(*args, **kwargs):
        return torch.tensor(*args, device=device, **kwargs)
    pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
    tri = tensor([[0, 1, 2]], dtype=torch.int32)
    dr.rasterize(glctx, pos, tri, resolution=[256, 256])

class NormalsRenderer:
    
    _glctx:dr.RasterizeCudaContext = None
    
    def __init__(
            self,
            mv: torch.Tensor, #C,4,4
            proj: torch.Tensor, #C,4,4
            image_size: Tuple[int,int],
            mvp = None,
            device=None,
            ):
        if mvp is None:
            self._mvp = proj @ mv #C,4,4
        else:
            self._mvp = mvp
        self._image_size = image_size
        self._glctx = dr.RasterizeCudaContext(output_db=False, device=device)
        _warmup(self._glctx, device)

    def render(self,
            vertices: torch.Tensor, #V,3 float
            normals: torch.Tensor, #V,3 float   in [-1, 1]
            faces: torch.Tensor, #F,3 long
            ) ->torch.Tensor: #C,H,W,4

        V = vertices.shape[0]
        faces = faces.type(torch.int32)
        vert_hom = torch.cat((vertices, torch.ones(V,1,device=vertices.device)),axis=-1) #V,3 -> V,4
        vertices_clip = vert_hom @ self._mvp.transpose(-2,-1) #C,V,4
        rast_out,_ = dr.rasterize(self._glctx, vertices_clip, faces, resolution=self._image_size, grad_db=False) #C,H,W,4
        vert_col = (normals+1)/2 #V,3
        col,_ = dr.interpolate(vert_col, rast_out, faces) #C,H,W,3
        alpha = torch.clamp(rast_out[..., -1:], max=1) #C,H,W,1
        col = torch.concat((col,alpha),dim=-1) #C,H,W,4
        col = dr.antialias(col, rast_out, vertices_clip, faces) #C,H,W,4
        return col #C,H,W,4

from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.renderer import (
    RasterizationSettings,
    MeshRendererWithFragments,
    TexturesVertex,
    MeshRasterizer,
    BlendParams,
    FoVOrthographicCameras,
    look_at_view_transform,
    hard_rgb_blend,
)

class VertexColorShader(ShaderBase):
    def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
        blend_params = kwargs.get("blend_params", self.blend_params)
        texels = meshes.sample_textures(fragments)
        return hard_rgb_blend(texels, fragments, blend_params)

def render_mesh_vertex_color(mesh, cameras, H, W, blur_radius=0.0, faces_per_pixel=1, bkgd=(0., 0., 0.), dtype=torch.float32, device="cuda"):
    if len(mesh) != len(cameras):
        if len(cameras) % len(mesh) == 0:
            mesh = mesh.extend(len(cameras))
        else:
            raise NotImplementedError()
    
    # render requires everything in float16 or float32
    input_dtype = dtype
    blend_params = BlendParams(1e-4, 1e-4, bkgd)

    # Define the settings for rasterization and shading
    raster_settings = RasterizationSettings(
        image_size=(H, W),
        blur_radius=blur_radius,
        faces_per_pixel=faces_per_pixel,
        clip_barycentric_coords=True,
        bin_size=None,
        max_faces_per_bin=500000,
    )

    # Create a renderer by composing a rasterizer and a shader
    # We simply render vertex colors through the custom VertexColorShader (no lighting, materials are used)
    renderer = MeshRendererWithFragments(
        rasterizer=MeshRasterizer(
            cameras=cameras,
            raster_settings=raster_settings
        ),
        shader=VertexColorShader(
            device=device,
            cameras=cameras,
            blend_params=blend_params
        )
    )

    # render RGB and depth, get mask
    with torch.autocast(dtype=input_dtype, device_type=torch.device(device).type):
        images, _ = renderer(mesh)
    return images   # BHW4

class Pytorch3DNormalsRenderer:
    def __init__(self, cameras, image_size, device):
        self.cameras = cameras.to(device)
        self._image_size = image_size
        self.device = device
    
    def render(self,
            vertices: torch.Tensor, #V,3 float
            normals: torch.Tensor, #V,3 float   in [-1, 1]
            faces: torch.Tensor, #F,3 long
            ) ->torch.Tensor: #C,H,W,4
        mesh = Meshes(verts=[vertices], faces=[faces], textures=TexturesVertex(verts_features=[(normals + 1) / 2])).to(self.device)
        return render_mesh_vertex_color(mesh, self.cameras, self._image_size[0], self._image_size[1], device=self.device)
    
def save_tensor_to_img(tensor, save_dir):
    from PIL import Image
    import numpy as np
    for idx, img in enumerate(tensor):
        img = img[..., :3].cpu().numpy()
        img = (img * 255).astype(np.uint8)
        img = Image.fromarray(img)
        img.save(save_dir + f"{idx}.png")

if __name__ == "__main__":
    import sys
    import os
    sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
    from mesh_reconstruction.func import make_star_cameras_orthographic, make_star_cameras_orthographic_py3d
    cameras = make_star_cameras_orthographic_py3d([0, 270, 180, 90], device="cuda", focal=1., dist=4.0)
    mv,proj = make_star_cameras_orthographic(4, 1)
    resolution = 1024
    renderer1 = NormalsRenderer(mv,proj, [resolution,resolution], device="cuda")
    renderer2 = Pytorch3DNormalsRenderer(cameras, [resolution,resolution], device="cuda")
    vertices = torch.tensor([[0,0,0],[0,0,1],[0,1,0],[1,0,0]], device="cuda", dtype=torch.float32)
    normals = torch.tensor([[-1,-1,-1],[1,-1,-1],[-1,-1,1],[-1,1,-1]], device="cuda", dtype=torch.float32)
    faces = torch.tensor([[0,1,2],[0,1,3],[0,2,3],[1,2,3]], device="cuda", dtype=torch.long)
    
    import time
    t0 = time.time()
    r1 = renderer1.render(vertices, normals, faces)
    print("time r1:", time.time() - t0)
    
    t0 = time.time()
    r2 = renderer2.render(vertices, normals, faces)
    print("time r2:", time.time() - t0)
    
    for i in range(4):
        print((r1[i]-r2[i]).abs().mean(), (r1[i]+r2[i]).abs().mean())