File size: 6,369 Bytes
fb53ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import numpy as np
from tqdm import tqdm
from functools import partial

from .diffusion_utils import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like

from .ddim import DDIMSampler

class DDIMSampler_DualContext(DDIMSampler):
    @torch.no_grad()
    def sample_text(self, *args, **kwargs):
        self.cond_type = 'prompt'
        return self.sample(*args, **kwargs)

    @torch.no_grad()
    def sample_vision(self, *args, **kwargs):
        self.cond_type = 'vision'
        return self.sample(*args, **kwargs)

    @torch.no_grad()
    def sample_mixed(self, *args, **kwargs):
        self.cond_type = kwargs.pop('cond_mixed_p')
        return self.sample(*args, **kwargs)

    @torch.no_grad()
    def sample(self,
               steps,
               shape,
               xt=None,
               conditioning=None,
               eta=0.,
               temperature=1.,
               noise_dropout=0.,
               verbose=True,
               log_every_t=100,
               unconditional_guidance_scale=1.,
               unconditional_conditioning=None,):

        self.make_schedule(ddim_num_steps=steps, ddim_eta=eta, verbose=verbose)
        # sampling
        print(f'Data shape for DDIM sampling is {shape}, eta {eta}')

        samples, intermediates = self.ddim_sampling(
            conditioning, 
            shape,
            xt=xt,
            ddim_use_original_steps=False,
            noise_dropout=noise_dropout,
            temperature=temperature,
            log_every_t=log_every_t,
            unconditional_guidance_scale=unconditional_guidance_scale,
            unconditional_conditioning=unconditional_conditioning,)
        return samples, intermediates

    @torch.no_grad()
    def ddim_sampling(self, 
                      conditioning,
                      shape,
                      xt=None, 
                      ddim_use_original_steps=False,
                      timesteps=None, 
                      log_every_t=100,
                      temperature=1., 
                      noise_dropout=0., 
                      unconditional_guidance_scale=1., 
                      unconditional_conditioning=None,):
        device = self.model.betas.device
        bs = shape[0]
        if xt is None:
            img = torch.randn(shape, device=device)
        else:
            img = xt

        if timesteps is None:
            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
        elif timesteps is not None and not ddim_use_original_steps:
            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
            timesteps = self.ddim_timesteps[:subset_end]

        intermediates = {'x_inter': [img], 'pred_x0': [img]}
        time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
        print(f"Running DDIM Sampling with {total_steps} timesteps")

        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)

        for i, step in enumerate(iterator):
            index = total_steps - i - 1
            ts = torch.full((bs,), step, device=device, dtype=torch.long)

            outs = self.p_sample_ddim(img, conditioning, ts, index=index, use_original_steps=ddim_use_original_steps,
                                      temperature=temperature,
                                      noise_dropout=noise_dropout,
                                      unconditional_guidance_scale=unconditional_guidance_scale,
                                      unconditional_conditioning=unconditional_conditioning)
            img, pred_x0 = outs

            if index % log_every_t == 0 or index == total_steps - 1:
                intermediates['x_inter'].append(img)
                intermediates['pred_x0'].append(pred_x0)

        return img, intermediates

    @torch.no_grad()
    def p_sample_ddim(self, x, conditioning, t, index, repeat_noise=False, use_original_steps=False, 
                      temperature=1., noise_dropout=0.,
                      unconditional_guidance_scale=1., unconditional_conditioning=None):
        b, *_, device = *x.shape, x.device

        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
            e_t = self.model.apply_model(x, t, conditioning, cond_type=self.cond_type)
        else:
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([t] * 2)
            # c_in = torch.cat([unconditional_conditioning, conditioning])

            # Added for vd-dc dual guidance
            if isinstance(unconditional_conditioning, list):
                c_in = [torch.cat([ui, ci]) for ui, ci in zip(unconditional_conditioning, conditioning)]
            else:
                c_in = torch.cat([unconditional_conditioning, conditioning])

            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in, cond_type=self.cond_type).chunk(2)
            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)

        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
        # select parameters corresponding to the currently considered timestep
        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)

        # current prediction for x_0
        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
        if noise_dropout > 0.:
            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
        return x_prev, pred_x0