File size: 18,200 Bytes
0af9841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
#!/usr/bin/env python3

import gradio as gr
import numpy as np
import torch
import json
import io
import soundfile as sf
from PIL import Image
import matplotlib
import joblib
from sklearn.decomposition import PCA
from collections import OrderedDict

matplotlib.use("Agg")  # Use non-interactive backend
import matplotlib.pyplot as plt

from text2speech import tts_randomized, parse_speed, tts_with_style_vector

# Constants and Paths
VOICES_JSON_PATH = "voices.json"
PCA_MODEL_PATH = "pca_model.pkl"
ANNOTATED_FEATURES_PATH = "annotated_features.npy"
VECTOR_DIMENSION = 256
ANNOTATED_FEATURES_NAMES = ["Gender", "Tone", "Quality", "Enunciation", "Pace", "Style"]
ANNOTATED_FEATURES_INFO = [
    "Male | Female",
    "High | Low",
    "Noisy | Clean",
    "Clear | Unclear",
    "Rapid | Slow",
    "Colloquial | Formal",
]

# Load PCA model and annotated features
try:
    pca = joblib.load(PCA_MODEL_PATH)
    print("PCA model loaded successfully.")
except FileNotFoundError:
    print(f"Error: PCA model file '{PCA_MODEL_PATH}' not found.")
    pca = None

try:
    annotated_features = np.load(ANNOTATED_FEATURES_PATH)
    print("Annotated features loaded successfully.")
except FileNotFoundError:
    print(f"Error: Annotated features file '{ANNOTATED_FEATURES_PATH}' not found.")
    annotated_features = None

# Utility Functions


def load_voices_json():
    """Load the voices.json file."""
    try:
        with open(VOICES_JSON_PATH, "r") as f:
            return json.load(f, object_pairs_hook=OrderedDict)
    except FileNotFoundError:
        print(f"Warning: {VOICES_JSON_PATH} not found. Creating a new one.")
        return OrderedDict()
    except json.JSONDecodeError:
        print(f"Warning: {VOICES_JSON_PATH} is not valid JSON.")
        return OrderedDict()


def save_voices_json(data, path=VOICES_JSON_PATH):
    """Save to voices.json."""
    with open(path, "w") as f:
        json.dump(data, f, indent=2)
    print(f"Voices saved to '{path}'.")


def update_sliders(voice_name):
    """
    Update slider values based on the selected predefined voice using reverse PCA.

    Args:
        voice_name (str): The name of the selected voice.

    Returns:
        list: A list of PCA component values to set the sliders.
    """
    if not voice_name:
        # Return default slider values (e.g., zeros) if no voice is selected
        return [0.0] * len(ANNOTATED_FEATURES_NAMES)

    voices_data = load_voices_json()
    if voice_name not in voices_data:
        print(f"Voice '{voice_name}' not found in {VOICES_JSON_PATH}.")
        return [0.0] * len(ANNOTATED_FEATURES_NAMES)

    style_vector = np.array(voices_data[voice_name], dtype=np.float32).reshape(1, -1)

    if pca is None:
        print("PCA model is not loaded.")
        return [0.0] * len(ANNOTATED_FEATURES_NAMES)

    try:
        # Transform the style vector into PCA component values
        pca_components = pca.transform(style_vector)[0]
        return pca_components.tolist()
    except Exception as e:
        print(f"Error transforming style vector to PCA components: {e}")
        return [0.0] * len(ANNOTATED_FEATURES_NAMES)


def generate_audio_with_voice(text, voice_key, speed_val):
    """
    Generate audio using the style vector of the selected predefined voice.

    Args:
        text (str): The text to synthesize.
        voice_key (str): The name of the selected voice.
        speed_val (float): The speed multiplier.

    Returns:
        tuple: (audio_tuple, style_vector)
    """
    try:
        # Load voices data
        voices_data = load_voices_json()

        if voice_key not in voices_data:
            print(f"Voice '{voice_key}' not found in {VOICES_JSON_PATH}.")
            return None, None, "Selected voice not found."

        # Retrieve the style vector for the selected voice
        style_vector = np.array(voices_data[voice_key], dtype=np.float32).reshape(1, -1)
        print(f"Selected Voice: {voice_key}")
        print(f"Style Vector (First 6): {style_vector[0][:6]}")

        # Convert to torch tensor
        style_vec_torch = torch.from_numpy(style_vector).float()

        # Generate audio using the TTS model
        audio_np = tts_with_style_vector(
            text,
            style_vec=style_vec_torch,
            speed=speed_val,
            alpha=0.3,
            beta=0.7,
            diffusion_steps=7,
            embedding_scale=1.0,
        )

        if audio_np is None:
            print("Audio generation failed.")
            return None, None, "Audio generation failed."

        # Prepare audio for Gradio
        sr = 24000  # Adjust based on your actual sampling rate
        audio_tuple = (sr, audio_np)

        # Return audio, image, and style vector
        return audio_tuple, style_vector.tolist()

    except Exception as e:
        print(f"Error in generate_audio_with_voice: {e}")
        return None, None, "An error occurred during audio generation."


def build_modified_vector(voice_key, top6_values):
    """Build a modified style vector by updating top 6 PCA components."""
    voices_data = load_voices_json()
    if voice_key not in voices_data:
        print(f"Voice '{voice_key}' not found in {VOICES_JSON_PATH}.")
        return None

    arr = np.array(voices_data[voice_key], dtype=np.float32).squeeze()
    if arr.ndim != 1 or arr.shape[0] != VECTOR_DIMENSION:
        print(f"Voice '{voice_key}' has invalid shape {arr.shape}. Expected (256,).")
        return None

    try:
        # Reconstruct the style vector using inverse PCA
        pca_components = np.array(top6_values).reshape(1, -1)
        reconstructed_vec = pca.inverse_transform(pca_components)[0]
        return reconstructed_vec
    except Exception as e:
        print(f"Error reconstructing style vector: {e}")
        return None


def reconstruct_style_vector(pca_components):
    """
    Reconstruct the 256-dimensional style vector from PCA components.
    """
    if pca is None:
        print("PCA model is not loaded.")
        return None
    try:
        return pca.inverse_transform([pca_components])[0]
    except Exception as e:
        print(f"Error during inverse PCA transform: {e}")
        return None


def generate_custom_audio(text, voice_key, randomize, speed_str, *slider_values):
    """
    Generate audio and produce a matplotlib plot of the style vector.
    Returns:
      - audio tuple (sr, np_array) for Gradio's Audio
      - a PIL Image representing the style vector plot
      - the final style vector as a list for State
    """
    try:
        speed_val = parse_speed(speed_str)
        print(f"Parsed speed: {speed_val}")

        if randomize:
            # Generate randomized style vector
            audio_np, random_style_vec = tts_randomized(text, speed=speed_val)
            if random_style_vec is None:
                print("Failed to generate randomized style vector.")
                return None, None, None
            # Ensure the style vector is flat
            final_vec = (
                random_style_vec.numpy().flatten()
                if isinstance(random_style_vec, torch.Tensor)
                else np.array(random_style_vec).flatten()
            )
            print("Randomized Style Vector (First 6):", final_vec[:6])
        else:
            # Reconstruct the style vector from slider values using inverse PCA
            reconstructed_vec = build_modified_vector(voice_key, slider_values)
            if reconstructed_vec is None:
                print(
                    "No reconstructed vector could be constructed, skipping audio generation."
                )
                return None, None, None

            # Convert to torch tensor
            style_vec_torch = torch.from_numpy(reconstructed_vec).float().unsqueeze(0)

            # Generate audio with the reconstructed style vector
            audio_np = tts_with_style_vector(
                text,
                style_vec=style_vec_torch,
                speed=speed_val,
                alpha=0.3,
                beta=0.7,
                diffusion_steps=7,
                embedding_scale=1.0,
            )
            final_vec = reconstructed_vec
            print("Reconstructed Style Vector (First 6):", final_vec[:6])

        if audio_np is None:
            print("Audio generation failed.")
            return None, None, None

        # Prepare audio for Gradio
        sr = 24000  # Adjust based on your actual sampling rate
        audio_tuple = (sr, audio_np)

        # Return audio, image, and style vector
        return audio_tuple, final_vec.tolist()

    except Exception as e:
        print(f"Error generating audio and style plot: {e}")
        return None, None, None


def save_style_to_json(style_data, style_name):
    """Saves the provided style_data (list of floats) into voices.json under style_name."""
    if not style_name.strip():
        return "Please enter a new style name before saving."

    voices_data = load_voices_json()
    if style_name in voices_data:
        return (
            f"Style name '{style_name}' already exists. Please choose a different name."
        )

    # Ensure the style_data has the correct length
    if len(style_data) != VECTOR_DIMENSION:
        return f"Style vector length mismatch. Expected {VECTOR_DIMENSION}, got {len(style_data)}."

    # Save the style vector
    voices_data[style_name] = style_data
    save_voices_json(voices_data)
    return f"Saved style as '{style_name}' in {VOICES_JSON_PATH}."


# Gradio Interface Functions


def rearrange_voices(new_order):
    """Rearrange the voices based on the new_order list."""
    voices_data = load_voices_json()
    new_order_list = [name.strip() for name in new_order.split(",")]
    if not all(name in voices_data for name in new_order_list):
        return "Error: New order contains invalid voice names.", list(
            voices_data.keys()
        )
    ordered_data = OrderedDict()
    for name in new_order_list:
        ordered_data[name] = voices_data[name]
    save_voices_json(ordered_data)
    print(f"Voices rearranged: {list(ordered_data.keys())}")
    return "Voices rearranged successfully.", list(ordered_data.keys())


def delete_voice(selected):
    """Delete voices from the voices.json."""
    if not selected:
        return "No voices selected for deletion.", list(load_voices_json().keys())
    voices_data = load_voices_json()
    for voice_name in selected:
        if voice_name in voices_data:
            del voices_data[voice_name]
            print(f"Voice '{voice_name}' deleted.")
    save_voices_json(voices_data)
    return "Deleted selected voices successfully.", list(voices_data.keys())


def upload_new_voices(uploaded_file):
    """Upload new voices from a JSON file."""
    if uploaded_file is None:
        return "No file uploaded.", list(load_voices_json().keys())
    try:
        uploaded_data = json.load(uploaded_file)
        if not isinstance(uploaded_data, dict):
            return "Invalid JSON format. Expected a dictionary of voices.", list(
                load_voices_json().keys()
            )
        voices_data = load_voices_json()
        voices_data.update(uploaded_data)
        save_voices_json(voices_data)
        print(f"Voices uploaded: {list(uploaded_data.keys())}")
        return "Voices uploaded successfully.", list(voices_data.keys())
    except json.JSONDecodeError:
        return "Uploaded file is not valid JSON.", list(load_voices_json().keys())


# Create Gradio Interface with Tabs


def create_combined_interface():
    voices_data = load_voices_json()
    voice_choices = list(voices_data.keys())
    default_voice = voice_choices[0] if voice_choices else None

    css = """
    h4 {
        text-align: center;
        display:block;
    }
    """

    def refresh_voices():
        """Refresh the voices by reloading the JSON."""
        new_choices = list(load_voices_json().keys())
        print(f"Voices refreshed: {new_choices}")
        return gr.Dropdown(choices=new_choices)

    with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
        gr.Markdown("# StyleTTS2 Studio - Build custom voices")

        # ----------- Text-to-Speech Tab -----------
        with gr.Tab("Text-to-Speech"):
            gr.Markdown("### Generate Speech with Predefined Voices")

            with gr.Column():
                text_input = gr.Textbox(
                    label="Text to Synthesize",
                    value="Hello world from the Gradio + TTS pipeline!",
                    lines=3,
                )
                voice_dropdown = gr.Dropdown(
                    choices=voice_choices,
                    label="Select Base Voice",
                    value=default_voice,
                    interactive=True,
                )
                speed_slider = gr.Slider(
                    minimum=50,
                    maximum=200,
                    step=1,
                    label="Speed (%)",
                    value=100,
                )
                with gr.Row():
                    generate_btn = gr.Button("Generate Audio")

            audio_output = gr.Audio(label="Synthesized Audio")

            # Generate button functionality
            def on_generate_tts(text, voice, speed):
                if not voice:
                    return None, "No voice selected."
                speed_val = speed / 100  # Convert percentage to multiplier
                audio, style_vector = generate_audio_with_voice(text, voice, speed_val)
                if audio is None:
                    return None, style_vector  # style_vector contains the error message
                return audio, "Audio generated successfully."

            generate_btn.click(
                fn=on_generate_tts,
                inputs=[text_input, voice_dropdown, speed_slider],
                outputs=[audio_output, gr.Textbox(label="Status", visible=False)],
            )

        # ----------- Voice Studio Tab -----------
        with gr.Tab("Voice Studio"):
            gr.Markdown("### Customize and Create New Voices")

            with gr.Column():
                text_input_studio = gr.Textbox(
                    label="Text to Synthesize",
                    value="Customize your voice here!",
                    lines=3,
                )
                voice_dropdown_studio = gr.Dropdown(
                    choices=voice_choices,
                    label="Select Base Voice",
                    value=default_voice,
                )
                speed_slider_studio = gr.Slider(
                    minimum=50,
                    maximum=200,
                    step=1,
                    label="Speed (%)",
                    value=100,
                )
                # Sliders for PCA components (6 sliders)
                pca_sliders = [
                    gr.Slider(
                        minimum=-2.0,
                        maximum=2.0,
                        value=0.0,
                        step=0.1,
                        label=feature,
                    )
                    for feature in ANNOTATED_FEATURES_NAMES
                ]

            generate_btn_studio = gr.Button("Generate Customized Audio")
            audio_output_studio = gr.Audio(label="Customized Synthesized Audio")
            new_style_name = gr.Textbox(label="New Style Name", value="")
            save_btn_studio = gr.Button("Save Customized Voice")
            status_text = gr.Textbox(label="Status", visible=True)

            # State to hold the last style vector
            style_vector_state_studio = gr.State()

            # Generate button functionality
            def on_generate_studio(text, voice, speed, *pca_values):
                if not voice:
                    return None, "No voice selected.", None
                speed_val = speed / 100  # Convert percentage to multiplier
                result = generate_custom_audio(
                    text, voice, False, speed_val, *pca_values
                )
                if result is None:
                    return None, "Failed to generate audio.", None
                audio_tuple, style_vector = result
                style_vector_state_studio.value = style_vector
                return audio_tuple, "Audio generated successfully.", style_vector

            generate_btn_studio.click(
                fn=on_generate_studio,
                inputs=[text_input_studio, voice_dropdown_studio, speed_slider_studio]
                + pca_sliders,
                outputs=[audio_output_studio, status_text, style_vector_state_studio],
            )

            # Save button functionality
            def on_save_style_studio(style_vector, style_name):
                if not style_name:
                    return "Please enter a name for the new voice!"
                result = save_style_to_json(style_vector, style_name)
                new_choices = list(load_voices_json().keys())
                # Return multiple values to update both dropdowns and show status
                return (
                    gr.Dropdown(choices=new_choices),  # Update first dropdown
                    gr.Dropdown(choices=new_choices),  # Update studio dropdown
                    result,  # Status message
                )

            save_btn_studio.click(
                fn=on_save_style_studio,
                inputs=[style_vector_state_studio, new_style_name],
                outputs=[voice_dropdown, voice_dropdown_studio, status_text],
            )

            # Add callback to update sliders when a voice is selected
            voice_dropdown_studio.change(
                fn=update_sliders,
                inputs=voice_dropdown_studio,
                outputs=pca_sliders,
            )

        gr.Markdown(
            "#### Based on [StyleTTS2](https://github.com/yl4579/StyleTTS2) and [artificial StyleTTS2](https://huggingface.co/dkounadis/artificial-styletts2/tree/main)"
        )

    return demo


if __name__ == "__main__":
    try:
        interface = create_combined_interface()
        interface.launch(share=False)
    except Exception as e:
        print(f"An error occurred while launching the interface: {e}")