Spaces:
Running
Running
File size: 16,073 Bytes
6710c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import argparse
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from model.build_model import build_model
import torch
import cv2
import numpy as np
import torchvision
import os
import tqdm
import time
from utils.misc import prepare_cooridinate_input, customRandomCrop
from datasets.build_INR_dataset import Implicit2DGenerator
import albumentations
from albumentations import Resize
from torch.utils.data import DataLoader
from utils.misc import normalize
import math
class single_image_dataset(torch.utils.data.Dataset):
def __init__(self, opt, composite_image=None, mask=None):
super().__init__()
self.opt = opt
if composite_image is None:
composite_image = cv2.imread(opt.composite_image)
composite_image = cv2.cvtColor(composite_image, cv2.COLOR_BGR2RGB)
self.composite_image = composite_image
assert composite_image.shape[0] == composite_image.shape[1], "This faster script only supports square images."
assert composite_image.shape[
0] % 256 == 0, "This faster script only supports images with resolution multiples of 256."
assert opt.split_resolution % (composite_image.shape[
0] // 16) == 0, f"The image resolution is {composite_image.shape[0]}, " \
f"you should set {opt.split_resolution} to multiplies of {composite_image.shape[0] // 16}"
if mask is None:
mask = cv2.imread(opt.mask)
mask = mask[:, :, 0].astype(np.float32) / 255.
self.mask = mask
self.torch_transforms = transforms.Compose([transforms.ToTensor(),
transforms.Normalize([.5, .5, .5], [.5, .5, .5])])
self.INR_dataset = Implicit2DGenerator(opt, 'Val')
self.split_width_resolution = self.split_height_resolution = opt.split_resolution
self.num_w = math.ceil(composite_image.shape[1] / self.split_width_resolution)
self.num_h = math.ceil(composite_image.shape[0] / self.split_height_resolution)
self.split_start_point = []
"Split the image into several parts."
for i in range(self.num_h):
for j in range(self.num_w):
if i == composite_image.shape[0] // self.split_height_resolution:
if j == composite_image.shape[1] // self.split_width_resolution:
self.split_start_point.append((composite_image.shape[0] - self.split_height_resolution,
composite_image.shape[1] - self.split_width_resolution))
else:
self.split_start_point.append(
(composite_image.shape[0] - self.split_height_resolution, j * self.split_width_resolution))
else:
if j == composite_image.shape[1] // self.split_width_resolution:
self.split_start_point.append(
(i * self.split_height_resolution, composite_image.shape[1] - self.split_width_resolution))
else:
self.split_start_point.append(
(i * self.split_height_resolution, j * self.split_width_resolution))
assert len(self.split_start_point) == self.num_w * self.num_h
print(
f"The image will be split into {self.num_h} pieces in height, and {self.num_w} pieces in width. Totally {self.num_h * self.num_w} patches.")
print(f"The final resolution of each patch is {self.split_height_resolution} x {self.split_width_resolution}")
def __len__(self):
return self.num_w * self.num_h
def __getitem__(self, idx):
composite_image = self.composite_image
mask = self.mask
full_coord = prepare_cooridinate_input(mask).transpose(1, 2, 0)
tmp_transform = albumentations.Compose([Resize(self.opt.base_size, self.opt.base_size)],
additional_targets={'object_mask': 'image'})
transform_out = tmp_transform(image=self.composite_image, object_mask=self.mask)
compos_list = [self.torch_transforms(transform_out['image'])]
mask_list = [
torchvision.transforms.ToTensor()(transform_out['object_mask'][..., np.newaxis].astype(np.float32))]
coord_map_list = []
if composite_image.shape[0] != self.split_height_resolution:
c_h = self.split_start_point[idx][0] / (composite_image.shape[0] - self.split_height_resolution)
else:
c_h = 0
if composite_image.shape[1] != self.split_width_resolution:
c_w = self.split_start_point[idx][1] / (composite_image.shape[1] - self.split_width_resolution)
else:
c_w = 0
transform_out, c_h, c_w = customRandomCrop([composite_image, mask, full_coord],
self.split_height_resolution, self.split_width_resolution, c_h, c_w)
compos_list.append(self.torch_transforms(transform_out[0]))
mask_list.append(
torchvision.transforms.ToTensor()(transform_out[1][..., np.newaxis].astype(np.float32)))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[2]))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[2]))
for n in range(2):
tmp_comp = cv2.resize(composite_image, (
composite_image.shape[1] // 2 ** (n + 1), composite_image.shape[0] // 2 ** (n + 1)))
tmp_mask = cv2.resize(mask, (mask.shape[1] // 2 ** (n + 1), mask.shape[0] // 2 ** (n + 1)))
tmp_coord = prepare_cooridinate_input(tmp_mask).transpose(1, 2, 0)
transform_out, c_h, c_w = customRandomCrop([tmp_comp, tmp_mask, tmp_coord],
self.split_height_resolution // 2 ** (n + 1),
self.split_width_resolution // 2 ** (n + 1), c_h, c_w)
compos_list.append(self.torch_transforms(transform_out[0]))
mask_list.append(
torchvision.transforms.ToTensor()(transform_out[1][..., np.newaxis].astype(np.float32)))
coord_map_list.append(torchvision.transforms.ToTensor()(transform_out[2]))
out_comp = compos_list
out_mask = mask_list
out_coord = coord_map_list
fg_INR_coordinates, bg_INR_coordinates, fg_INR_RGB, fg_transfer_INR_RGB, bg_INR_RGB = self.INR_dataset.generator(
self.torch_transforms, transform_out[0], transform_out[0], mask)
return {
'composite_image': out_comp,
'mask': out_mask,
'coordinate_map': out_coord,
'composite_image0': out_comp[0],
'mask0': out_mask[0],
'coordinate_map0': out_coord[0],
'composite_image1': out_comp[1],
'mask1': out_mask[1],
'coordinate_map1': out_coord[1],
'composite_image2': out_comp[2],
'mask2': out_mask[2],
'coordinate_map2': out_coord[2],
'composite_image3': out_comp[3],
'mask3': out_mask[3],
'coordinate_map3': out_coord[3],
'fg_INR_coordinates': fg_INR_coordinates,
'bg_INR_coordinates': bg_INR_coordinates,
'fg_INR_RGB': fg_INR_RGB,
'fg_transfer_INR_RGB': fg_transfer_INR_RGB,
'bg_INR_RGB': bg_INR_RGB,
'start_point': self.split_start_point[idx],
'start_proportion': [self.split_start_point[idx][0] / (composite_image.shape[0]),
self.split_start_point[idx][1] / (composite_image.shape[1]),
(self.split_start_point[idx][0] + self.split_height_resolution) / (
composite_image.shape[0]),
(self.split_start_point[idx][1] + self.split_width_resolution) / (
composite_image.shape[1])],
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--split_resolution', type=int, default=2048,
help='The resolution of the patch split.')
parser.add_argument('--composite_image', type=str, default=r'./demo/demo_2k_composite.jpg',
help='composite image path')
parser.add_argument('--mask', type=str, default=r'./demo/demo_2k_mask.jpg',
help='mask path')
parser.add_argument('--save_path', type=str, default=r'./demo/',
help='save path')
parser.add_argument('--workers', type=int, default=8,
metavar='N', help='Dataloader threads.')
parser.add_argument('--batch_size', type=int, default=1,
help='You can override model batch size by specify positive number.')
parser.add_argument('--device', type=str, default='cuda',
help="Whether use cuda, 'cuda' or 'cpu'.")
parser.add_argument('--base_size', type=int, default=256,
help='Base size. Resolution of the image input into the Encoder')
parser.add_argument('--input_size', type=int, default=256,
help='Input size. Resolution of the image that want to be generated by the Decoder')
parser.add_argument('--INR_input_size', type=int, default=256,
help='INR input size. Resolution of the image that want to be generated by the Decoder. '
'Should be the same as `input_size`')
parser.add_argument('--INR_MLP_dim', type=int, default=32,
help='Number of channels for INR linear layer.')
parser.add_argument('--LUT_dim', type=int, default=7,
help='Dim of the output LUT. Refer to https://ieeexplore.ieee.org/abstract/document/9206076')
parser.add_argument('--activation', type=str, default='leakyrelu_pe',
help='INR activation layer type: leakyrelu_pe, sine')
parser.add_argument('--pretrained', type=str,
default=r'.\pretrained_models\Resolution_RAW_iHarmony4.pth',
help='Pretrained weight path')
parser.add_argument('--param_factorize_dim', type=int,
default=10,
help='The intermediate dimensions of the factorization of the predicted MLP parameters. '
'Refer to https://arxiv.org/abs/2011.12026')
parser.add_argument('--embedding_type', type=str,
default="CIPS_embed",
help='Which embedding_type to use.')
parser.add_argument('--INRDecode', action="store_false",
help='Whether INR decoder. Set it to False if you want to test the baseline '
'(https://github.com/SamsungLabs/image_harmonization)')
parser.add_argument('--isMoreINRInput', action="store_false",
help='Whether to cat RGB and mask. See Section 3.4 in the paper.')
parser.add_argument('--hr_train', action="store_false",
help='Whether use hr_train. See section 3.4 in the paper.')
parser.add_argument('--isFullRes', action="store_true",
help='Whether for original resolution. See section 3.4 in the paper.')
opt = parser.parse_args()
assert opt.batch_size == 1, 'This faster script only supports batch size 1 for inference.'
return opt
@torch.no_grad()
def inference(model, opt, composite_image=None, mask=None):
model.eval()
"dataset here is actually consisted of several patches of a single image."
singledataset = single_image_dataset(opt, composite_image, mask)
single_data_loader = DataLoader(singledataset, opt.batch_size, shuffle=False, drop_last=False, pin_memory=True,
num_workers=opt.workers, persistent_workers=False if composite_image is not None else True)
"Init a pure black image with the same size as the input image."
init_img = np.zeros_like(singledataset.composite_image)
time_all = 0
for step, batch in tqdm.tqdm(enumerate(single_data_loader)):
composite_image = [batch[f'composite_image{name}'].to(opt.device) for name in range(4)]
mask = [batch[f'mask{name}'].to(opt.device) for name in range(4)]
coordinate_map = [batch[f'coordinate_map{name}'].to(opt.device) for name in range(4)]
start_points = batch['start_point']
start_proportion = batch['start_proportion']
if opt.batch_size == 1:
start_points = [torch.cat(start_points)]
start_proportion = [torch.cat(start_proportion)]
fg_INR_coordinates = coordinate_map[1:]
try:
if step == 0: # This is for CUDA Kernel Warm-up, or the first inference step will be quite slow.
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates, start_proportion[0]
)
if opt.device == "cuda":
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_max_memory_cached()
start_time = time.time()
torch.cuda.synchronize()
fg_content_bg_appearance_construct, _, lut_transform_image = model(
composite_image,
mask,
fg_INR_coordinates, start_proportion[0]
)
if opt.device == "cuda":
torch.cuda.synchronize()
end_time = time.time()
end_max_memory = torch.cuda.max_memory_allocated() // 1024 ** 2
end_memory = torch.cuda.memory_allocated() // 1024 ** 2
print(f'GPU max memory usage: {end_max_memory} MB')
print(f'GPU memory usage: {end_memory} MB')
time_all += (end_time - start_time)
print(f'progress: {step} / {len(single_data_loader)}')
except:
raise Exception(
f'The image resolution is large. Please reduce the `split_resolution` value. Your current set is {opt.split_resolution}')
"Assemble the every patch's harmonized result into the final whole image."
for id in range(len(fg_INR_coordinates[0])):
pred_fg_image = fg_content_bg_appearance_construct[-1][id]
pred_harmonized_image = pred_fg_image * (mask[1][id] > 100 / 255.) + composite_image[1][id] * (
~(mask[1][id] > 100 / 255.))
pred_harmonized_tmp = cv2.cvtColor(
normalize(pred_harmonized_image.unsqueeze(0), opt, 'inv')[0].permute(1, 2, 0).cpu().mul_(255.).clamp_(
0., 255.).numpy().astype(np.uint8), cv2.COLOR_RGB2BGR)
init_img[start_points[id][0]:start_points[id][0] + singledataset.split_height_resolution,
start_points[id][1]:start_points[id][1] + singledataset.split_width_resolution] = pred_harmonized_tmp
print(f'Inference time: {time_all}')
if opt.save_path is not None:
os.makedirs(opt.save_path, exist_ok=True)
cv2.imwrite(os.path.join(opt.save_path, "pred_harmonized_image.jpg"), init_img)
return init_img
def main_process(opt, composite_image=None, mask=None):
cudnn.benchmark = True
model = build_model(opt).to(opt.device)
load_dict = torch.load(opt.pretrained)['model']
for k in load_dict.keys():
if k not in model.state_dict().keys():
print(f"Skip {k}")
model.load_state_dict(load_dict, strict=False)
return inference(model, opt, composite_image, mask)
if __name__ == '__main__':
opt = parse_args()
opt.transform_mean = [.5, .5, .5]
opt.transform_var = [.5, .5, .5]
main_process(opt)
|