File size: 5,521 Bytes
c195a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from PIL import Image

import torch
from transformers import StoppingCriteria, StoppingCriteriaList

import dataclasses
from enum import auto, Enum
from typing import List, Any


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    # system_img: List[Image.Image] = []
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "###"
    sep2: str = None

    skip_next: bool = False
    conv_id: Any = None

    def get_prompt(self):
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep
            for role, message in self.messages:
                if message:
                    #ret += role + ": " + message + self.sep
                    ret += role + ":" + message + self.sep
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ": " + message[0] + seps[i % 2] if isinstance(message, list) else role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == "7132":
            seps = [self.sep, self.sep2]
            ret = self.system 
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ": " + message[0] + seps[i % 2] if isinstance(message, list) else role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == "raw":
            seps = [self.sep, self.sep2]
            ret = self.system 
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + message + seps[i % 2]
                else:
                    ret += role 
            return ret

        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

    def append_message(self, role, message):
        self.messages.append([role, message])

    def to_gradio_chatbot(self):
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset:]):
            if i % 2 == 0:
                if type(msg) is tuple or type(msg) is list:
                    import base64
                    from io import BytesIO
                    msg, image = msg

                    max_hw, min_hw = max(image.size), min(image.size)
                    aspect_ratio = max_hw / min_hw
                    max_len, min_len = 800, 400
                    shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
                    longest_edge = int(shortest_edge * aspect_ratio)
                    W, H = image.size
                    if H > W:
                        H, W = longest_edge, shortest_edge
                    else:
                        H, W = shortest_edge, longest_edge
                    image = image.resize((W, H))
                    # image = image.resize((224, 224))
                    buffered = BytesIO()
                    image.save(buffered, format="JPEG")
                    img_b64_str = base64.b64encode(buffered.getvalue()).decode()
                    img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
                    msg = msg.replace('<Img><ImageHere></Img>', img_str)
                ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def copy(self):
        return Conversation(
            system=self.system,
            # system_img=self.system_img,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            conv_id=self.conv_id)

    def dict(self):
        return {
            "system": self.system,
            # "system_img": self.system_img,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
            "sep": self.sep,
            "sep2": self.sep2,
            "conv_id": self.conv_id,
        }


class StoppingCriteriaSub(StoppingCriteria):

    def __init__(self, stops=[], encounters=1):
        super().__init__()
        self.stops = stops

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
        for stop in self.stops:
            if torch.all((stop == input_ids[0][-len(stop):])).item():
                return True

        return False


meta = """meta instruction
You are an AI assistant whose name is 浦语.
- 浦语 is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- 浦语 can understand and communicate fluently in the language chosen by the user such as English and 中文.
conversation
"""
CONV_VISION_7132_v2 = Conversation(
    system=meta,
    roles=(" <|User|>", " <|Bot|>"),
    messages=(),
    offset=0,
    sep_style="7132",
    sep="<TOKENS_UNUSED_0>",
    sep2="<TOKENS_UNUSED_1>",
)