Spaces:
Sleeping
Sleeping
File size: 959 Bytes
40223c1 0cf1faf 4c41360 e5c1f52 0cf1faf 4c41360 0cf1faf 4c41360 0cf1faf 40223c1 55417dc 0cf1faf 40223c1 55417dc 40223c1 55417dc 40223c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the model and tokenizer
model_name = "WhoLetMeCook/ChefBERT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Function to make predictions
def predict_emotion(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = model(**inputs)
prediction = torch.argmax(outputs.logits, dim=-1).item()
return "Positive Emotion" if prediction == 1 else "Negative Emotion"
# Streamlit app layout
st.title("ChefBERT Emotion Classifier")
st.write("Enter a sentence and ChefBERT will predict whether the emotion is positive or negative.")
# Input box
user_input = st.text_input("Input Sentence", "")
if user_input:
result = predict_emotion(user_input)
st.write("Prediction: ", result)
|