Spaces:
Sleeping
Sleeping
File size: 17,231 Bytes
bd6e54b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import librosa
import numpy as np
import torch
import gradio as gr
import mido
from io import BytesIO
# import pyrubberband as pyrb
import torchaudio.transforms as transforms
from model.DiffSynthSampler import DiffSynthSampler
from tools import adsr_envelope, adjust_audio_length
from webUI.natural_language_guided.track_maker import DiffSynth
from webUI.natural_language_guided.utils import encodeBatch2GradioOutput_STFT, phase_to_Gradio_image, \
spectrogram_to_Gradio_image
def time_stretch_audio(waveform, sample_rate, stretch_factor):
# 如果输入是 numpy 数组,则转换为 torch.Tensor
if isinstance(waveform, np.ndarray):
waveform = torch.from_numpy(waveform)
# 确保 waveform 的类型为 torch.float32
waveform = waveform.to(torch.float32)
# 设置 STFT 参数
n_fft = 2048 # STFT 窗口大小
hop_length = n_fft // 4 # STFT 的 hop length 设置为 n_fft 的四分之一
# 计算短时傅里叶变换 (STFT)
stft = torch.stft(waveform, n_fft=n_fft, hop_length=hop_length, return_complex=True)
# 创建 TimeStretch 变换
time_stretch = transforms.TimeStretch(hop_length=hop_length, n_freq=1025, fixed_rate=False)
print(stft.shape)
# 应用时间伸缩
stretched_stft = time_stretch(stft, stretch_factor)
# 将 STFT 转换回时域波形
stretched_waveform = torch.istft(stretched_stft, n_fft=n_fft, hop_length=hop_length)
# 返回处理后的 waveform,转换为 numpy 数组
return stretched_waveform.detach().numpy()
def get_build_instrument_module(gradioWebUI, virtual_instruments_state):
# Load configurations
uNet = gradioWebUI.uNet
freq_resolution, time_resolution = gradioWebUI.freq_resolution, gradioWebUI.time_resolution
VAE_scale = gradioWebUI.VAE_scale
height, width, channels = int(freq_resolution / VAE_scale), int(time_resolution / VAE_scale), gradioWebUI.channels
timesteps = gradioWebUI.timesteps
VAE_quantizer = gradioWebUI.VAE_quantizer
VAE_decoder = gradioWebUI.VAE_decoder
CLAP = gradioWebUI.CLAP
CLAP_tokenizer = gradioWebUI.CLAP_tokenizer
device = gradioWebUI.device
squared = gradioWebUI.squared
sample_rate = gradioWebUI.sample_rate
noise_strategy = gradioWebUI.noise_strategy
def select_sound(virtual_instrument_name, virtual_instruments_dict):
virtual_instruments = virtual_instruments_dict["virtual_instruments"]
virtual_instrument = virtual_instruments[virtual_instrument_name]
return {source_sound_spectrogram_image: virtual_instrument["spectrogram_gradio_image"],
source_sound_phase_image: virtual_instrument["phase_gradio_image"],
source_sound_audio: virtual_instrument["signal"]}
def make_track(inpaint_steps, midi, noising_strength, attack, before_release, instrument_names, virtual_instruments_dict):
if noising_strength < 1:
print(f"Warning: making track with noising_strength = {noising_strength} < 1")
virtual_instruments = virtual_instruments_dict["virtual_instruments"]
sample_steps = int(inpaint_steps)
instrument_names = instrument_names.split("@")
instruments_configs = {}
for virtual_instrument_name in instrument_names:
virtual_instrument = virtual_instruments[virtual_instrument_name]
latent_representation = torch.tensor(virtual_instrument["latent_representation"], dtype=torch.float32).to(device)
sampler = virtual_instrument["sampler"]
batchsize = 1
latent_representation = latent_representation.repeat(batchsize, 1, 1, 1)
mid = mido.MidiFile(file=BytesIO(midi))
instruments_configs[virtual_instrument_name] = {
'sample_steps': sample_steps,
'sampler': sampler,
'noising_strength': noising_strength,
'latent_representation': latent_representation,
'attack': attack,
'before_release': before_release}
diffSynth = DiffSynth(instruments_configs, uNet, VAE_quantizer, VAE_decoder, CLAP, CLAP_tokenizer, device)
full_audio = diffSynth.get_music(mid, instrument_names)
return {track_audio: (sample_rate, full_audio)}
def test_duration_inpaint(virtual_instrument_name, inpaint_steps, duration, noising_strength, end_noise_level_ratio, attack, before_release, mask_flexivity, virtual_instruments_dict, use_dynamic_mask):
width = int(time_resolution * ((duration + 1) / 4) / VAE_scale)
virtual_instruments = virtual_instruments_dict["virtual_instruments"]
virtual_instrument = virtual_instruments[virtual_instrument_name]
latent_representation = torch.tensor(virtual_instrument["latent_representation"], dtype=torch.float32).to(device)
sample_steps = int(inpaint_steps)
sampler = virtual_instrument["sampler"]
batchsize = 1
mySampler = DiffSynthSampler(timesteps, height=height, channels=channels, noise_strategy=noise_strategy)
mySampler.respace(list(np.linspace(0, timesteps - 1, sample_steps, dtype=np.int32)))
latent_representation = latent_representation.repeat(batchsize, 1, 1, 1)
# mask = 1, freeze
latent_mask = torch.zeros((batchsize, 1, height, width), dtype=torch.float32).to(device)
latent_mask[:, :, :, :int(time_resolution * (attack / 4) / VAE_scale)] = 1.0
latent_mask[:, :, :, -int(time_resolution * ((before_release+1) / 4) / VAE_scale):] = 1.0
text2sound_embedding = \
CLAP.get_text_features(**CLAP_tokenizer([""], padding=True, return_tensors="pt"))[0].to(
device)
condition = text2sound_embedding.repeat(1, 1)
latent_representations, initial_noise = \
mySampler.inpaint_sample(model=uNet, shape=(batchsize, channels, height, width),
noising_strength=noising_strength,
guide_img=latent_representation, mask=latent_mask, return_tensor=True,
condition=condition, sampler=sampler,
use_dynamic_mask=use_dynamic_mask,
end_noise_level_ratio=end_noise_level_ratio,
mask_flexivity=mask_flexivity)
latent_representations = latent_representations[-1]
quantized_latent_representations, loss, (_, _, _) = VAE_quantizer(latent_representations)
# Todo: remove hard-coding
flipped_log_spectrums, flipped_phases, rec_signals, _, _, _ = encodeBatch2GradioOutput_STFT(VAE_decoder,
quantized_latent_representations,
resolution=(
512,
width * VAE_scale),
original_STFT_batch=None
)
return {test_duration_spectrogram_image: flipped_log_spectrums[0],
test_duration_phase_image: flipped_phases[0],
test_duration_audio: (sample_rate, rec_signals[0])}
def test_duration_envelope(virtual_instrument_name, duration, noising_strength, attack, before_release, release, virtual_instruments_dict):
virtual_instruments = virtual_instruments_dict["virtual_instruments"]
virtual_instrument = virtual_instruments[virtual_instrument_name]
sample_rate, signal = virtual_instrument["signal"]
applied_signal = adsr_envelope(signal=signal, sample_rate=sample_rate, duration=duration,
attack_time=0.0, decay_time=0.0, sustain_level=1.0, release_time=release)
D = librosa.stft(applied_signal, n_fft=1024, hop_length=256, win_length=1024)[1:, :]
spc = np.abs(D)
phase = np.angle(D)
flipped_log_spectrum = spectrogram_to_Gradio_image(spc)
flipped_phase = phase_to_Gradio_image(phase)
return {test_duration_spectrogram_image: flipped_log_spectrum,
test_duration_phase_image: flipped_phase,
test_duration_audio: (sample_rate, applied_signal)}
def test_duration_stretch(virtual_instrument_name, duration, noising_strength, attack, before_release, release, virtual_instruments_dict):
virtual_instruments = virtual_instruments_dict["virtual_instruments"]
virtual_instrument = virtual_instruments[virtual_instrument_name]
sample_rate, signal = virtual_instrument["signal"]
s = 3 / duration
# applied_signal = pyrb.time_stretch(signal, sample_rate, s)
applied_signal = time_stretch_audio(signal, sample_rate, s)
applied_signal = adjust_audio_length(applied_signal, int((duration+1) * sample_rate), sample_rate, sample_rate)
D = librosa.stft(applied_signal, n_fft=1024, hop_length=256, win_length=1024)[1:, :]
spc = np.abs(D)
phase = np.angle(D)
flipped_log_spectrum = spectrogram_to_Gradio_image(spc)
flipped_phase = phase_to_Gradio_image(phase)
return {test_duration_spectrogram_image: flipped_log_spectrum,
test_duration_phase_image: flipped_phase,
test_duration_audio: (sample_rate, applied_signal)}
with gr.Tab("TestInTrack"):
gr.Markdown("Make music with generated sounds!")
with gr.Row(variant="panel"):
with gr.Column(scale=3):
instrument_name_textbox = gr.Textbox(label="Instrument name", lines=1,
placeholder="Name of your instrument", scale=1)
select_instrument_button = gr.Button(variant="primary", value="Select", scale=1)
with gr.Column(scale=3):
inpaint_steps_slider = gr.Slider(minimum=5.0, maximum=999.0, value=20.0, step=1.0, label="inpaint_steps")
noising_strength_slider = gradioWebUI.get_noising_strength_slider(default_noising_strength=1.)
end_noise_level_ratio_slider = gr.Slider(minimum=0.0, maximum=1., value=0.0, step=0.01, label="end_noise_level_ratio")
attack_slider = gr.Slider(minimum=0.0, maximum=1.5, value=0.5, step=0.01, label="attack in sec")
before_release_slider = gr.Slider(minimum=0.0, maximum=1.5, value=0.5, step=0.01, label="before_release in sec")
release_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.01, label="release in sec")
mask_flexivity_slider = gr.Slider(minimum=0.01, maximum=1.00, value=1., step=0.01, label="mask_flexivity")
with gr.Column(scale=3):
use_dynamic_mask_checkbox = gr.Checkbox(label="Use dynamic mask", value=True)
test_duration_envelope_button = gr.Button(variant="primary", value="Apply envelope", scale=1)
test_duration_stretch_button = gr.Button(variant="primary", value="Apply stretch", scale=1)
test_duration_inpaint_button = gr.Button(variant="primary", value="Inpaint different duration", scale=1)
duration_slider = gradioWebUI.get_duration_slider()
with gr.Row(variant="panel"):
with gr.Column(scale=2):
with gr.Row(variant="panel"):
source_sound_spectrogram_image = gr.Image(label="New sound spectrogram", type="numpy",
height=600, scale=1)
source_sound_phase_image = gr.Image(label="New sound phase", type="numpy",
height=600, scale=1)
source_sound_audio = gr.Audio(type="numpy", label="Play new sound", interactive=False)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
test_duration_spectrogram_image = gr.Image(label="New sound spectrogram", type="numpy",
height=600, scale=1)
test_duration_phase_image = gr.Image(label="New sound phase", type="numpy",
height=600, scale=1)
test_duration_audio = gr.Audio(type="numpy", label="Play new sound", interactive=False)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
# track_spectrogram_image = gr.Image(label="New sound spectrogram", type="numpy",
# height=420, scale=1)
midi_file = gr.File(label="Upload midi file", type="binary")
instrument_names_textbox = gr.Textbox(label="Instrument names", lines=2,
placeholder="Names of your instrument used to play the midi", scale=1)
track_audio = gr.Audio(type="numpy", label="Play new sound", interactive=False)
make_track_button = gr.Button(variant="primary", value="Make track", scale=1)
select_instrument_button.click(select_sound,
inputs=[instrument_name_textbox, virtual_instruments_state],
outputs=[source_sound_spectrogram_image,
source_sound_phase_image,
source_sound_audio])
test_duration_envelope_button.click(test_duration_envelope,
inputs=[instrument_name_textbox, duration_slider,
noising_strength_slider,
attack_slider,
before_release_slider,
release_slider,
virtual_instruments_state,
],
outputs=[test_duration_spectrogram_image,
test_duration_phase_image,
test_duration_audio])
test_duration_stretch_button.click(test_duration_stretch,
inputs=[instrument_name_textbox, duration_slider,
noising_strength_slider,
attack_slider,
before_release_slider,
release_slider,
virtual_instruments_state,
],
outputs=[test_duration_spectrogram_image,
test_duration_phase_image,
test_duration_audio])
test_duration_inpaint_button.click(test_duration_inpaint,
inputs=[instrument_name_textbox,
inpaint_steps_slider,
duration_slider,
noising_strength_slider,
end_noise_level_ratio_slider,
attack_slider,
before_release_slider,
mask_flexivity_slider,
virtual_instruments_state,
use_dynamic_mask_checkbox],
outputs=[test_duration_spectrogram_image,
test_duration_phase_image,
test_duration_audio])
make_track_button.click(make_track,
inputs=[inpaint_steps_slider, midi_file,
noising_strength_slider,
attack_slider,
before_release_slider,
instrument_names_textbox,
virtual_instruments_state],
outputs=[track_audio])
|