File size: 11,323 Bytes
ae1bdf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import json
import numpy as np
import torch
from torch import nn
from six.moves import xrange
from torch.utils.tensorboard import SummaryWriter
import random

from model.diffusion import ConditionedUnet
from tools import create_key

class Discriminator(nn.Module):
    def __init__(self, label_emb_dim):
        super(Discriminator, self).__init__()
        # 特征图卷积层
        self.conv_layers = nn.Sequential(
            nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(128),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.AdaptiveAvgPool2d(1), # 添加适应性池化层
            nn.Flatten()
        )

        # 文本嵌入处理
        self.text_embedding = nn.Sequential(
            nn.Linear(label_emb_dim, 512),
            nn.LeakyReLU(0.2, inplace=True)
        )

        # 判别器最后的全连接层
        self.fc = nn.Linear(512 + 512, 1)  # 两个512分别来自特征图和文本嵌入

    def forward(self, x, text_emb):
        x = self.conv_layers(x)
        text_emb = self.text_embedding(text_emb)
        combined = torch.cat((x, text_emb), dim=1)
        output = self.fc(combined)
        return output



def evaluate_GAN(device, generator, discriminator, iterator, encodes2embeddings_mapping):
    generator.to(device)
    discriminator.to(device)
    generator.eval()
    discriminator.eval()

    real_accs = []
    fake_accs = []

    with torch.no_grad():
        for i in range(100):
            data, attributes = next(iter(iterator))
            data = data.to(device)

            conditions = [encodes2embeddings_mapping[create_key(attribute)] for attribute in attributes]
            selected_conditions = [random.choice(conditions_of_one_sample) for conditions_of_one_sample in conditions]
            selected_conditions = torch.stack(selected_conditions).float().to(device)

            # 将数据和标签移至设备
            real_images = data.to(device)
            labels = selected_conditions.to(device)

            # 生成噪声和假图像
            noise = torch.randn_like(real_images).to(device)
            fake_images = generator(noise)

            # 评估鉴别器的性能
            real_preds = discriminator(real_images, labels).reshape(-1)
            fake_preds = discriminator(fake_images, labels).reshape(-1)
            real_acc = (real_preds > 0.5).float().mean().item()  # 真实图像的准确率
            fake_acc = (fake_preds < 0.5).float().mean().item()  # 生成图像的准确率

            real_accs.append(real_acc)
            fake_accs.append(fake_acc)


    # 计算平均准确率
    average_real_acc = sum(real_accs) / len(real_accs)
    average_fake_acc = sum(fake_accs) / len(fake_accs)

    return average_real_acc, average_fake_acc


def get_Generator(model_Config, load_pretrain=False, model_name=None, device="cpu"):
    generator = ConditionedUnet(**model_Config)
    print(f"Model intialized, size: {sum(p.numel() for p in generator.parameters() if p.requires_grad)}")
    generator.to(device)

    if load_pretrain:
        print(f"Loading weights from models/{model_name}_generator.pth")
        checkpoint = torch.load(f'models/{model_name}_generator.pth', map_location=device)
        generator.load_state_dict(checkpoint['model_state_dict'])
    generator.eval()
    return generator


def get_Discriminator(model_Config, load_pretrain=False, model_name=None, device="cpu"):
    discriminator = Discriminator(**model_Config)
    print(f"Model intialized, size: {sum(p.numel() for p in discriminator.parameters() if p.requires_grad)}")
    discriminator.to(device)

    if load_pretrain:
        print(f"Loading weights from models/{model_name}_discriminator.pth")
        checkpoint = torch.load(f'models/{model_name}_discriminator.pth', map_location=device)
        discriminator.load_state_dict(checkpoint['model_state_dict'])
    discriminator.eval()
    return discriminator


def train_GAN(device, init_model_name, unetConfig, BATCH_SIZE, lr_G, lr_D, max_iter, iterator, load_pretrain,

                     encodes2embeddings_mapping, save_steps, unconditional_condition, uncondition_rate, save_model_name=None):

    if save_model_name is None:
        save_model_name = init_model_name

    def save_model_hyperparameter(model_name, unetConfig, BATCH_SIZE, model_size, current_iter, current_loss):
        model_hyperparameter = unetConfig
        model_hyperparameter["BATCH_SIZE"] = BATCH_SIZE
        model_hyperparameter["lr_G"] = lr_G
        model_hyperparameter["lr_D"] = lr_D
        model_hyperparameter["model_size"] = model_size
        model_hyperparameter["current_iter"] = current_iter
        model_hyperparameter["current_loss"] = current_loss
        with open(f"models/hyperparameters/{model_name}_GAN.json", "w") as json_file:
            json.dump(model_hyperparameter, json_file, ensure_ascii=False, indent=4)

    generator = ConditionedUnet(**unetConfig)
    discriminator = Discriminator(unetConfig["label_emb_dim"])
    generator_size = sum(p.numel() for p in generator.parameters() if p.requires_grad)
    discriminator_size = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)

    print(f"Generator trainable parameters: {generator_size}, discriminator trainable parameters: {discriminator_size}")
    generator.to(device)
    discriminator.to(device)
    optimizer_G = torch.optim.Adam(filter(lambda p: p.requires_grad, generator.parameters()), lr=lr_G, amsgrad=False)
    optimizer_D = torch.optim.Adam(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=lr_D, amsgrad=False)

    if load_pretrain:
        print(f"Loading weights from models/{init_model_name}_generator.pt")
        checkpoint = torch.load(f'models/{init_model_name}_generator.pth')
        generator.load_state_dict(checkpoint['model_state_dict'])
        optimizer_G.load_state_dict(checkpoint['optimizer_state_dict'])
        print(f"Loading weights from models/{init_model_name}_discriminator.pt")
        checkpoint = torch.load(f'models/{init_model_name}_discriminator.pth')
        discriminator.load_state_dict(checkpoint['model_state_dict'])
        optimizer_D.load_state_dict(checkpoint['optimizer_state_dict'])
    else:
        print("Model initialized.")
    if max_iter == 0:
        print("Return model directly.")
        return generator, discriminator, optimizer_G, optimizer_D


    train_loss_G, train_loss_D = [], []
    writer = SummaryWriter(f'runs/{save_model_name}_GAN')

    # average_real_acc, average_fake_acc = evaluate_GAN(device, generator, discriminator, iterator, encodes2embeddings_mapping)
    # print(f"average_real_acc, average_fake_acc: {average_real_acc, average_fake_acc}")

    criterion = nn.BCEWithLogitsLoss()
    generator.train()
    for i in xrange(max_iter):
        data, attributes = next(iter(iterator))
        data = data.to(device)

        conditions = [encodes2embeddings_mapping[create_key(attribute)] for attribute in attributes]
        unconditional_condition_copy = torch.tensor(unconditional_condition, dtype=torch.float32).to(device).detach()
        selected_conditions = [unconditional_condition_copy if random.random() < uncondition_rate else random.choice(
            conditions_of_one_sample) for conditions_of_one_sample in conditions]
        batch_size = len(selected_conditions)
        selected_conditions = torch.stack(selected_conditions).float().to(device)

        # 将数据和标签移至设备
        real_images = data.to(device)
        labels = selected_conditions.to(device)

        # 真实和假的标签
        real_labels = torch.ones(batch_size, 1).to(device)
        fake_labels = torch.zeros(batch_size, 1).to(device)

        # ========== 训练鉴别器 ==========
        optimizer_D.zero_grad()

        # 计算鉴别器对真实图像的损失
        outputs_real = discriminator(real_images, labels)
        loss_D_real = criterion(outputs_real, real_labels)

        # 生成假图像
        noise = torch.randn_like(real_images).to(device)
        fake_images = generator(noise, labels)

        # 计算鉴别器对假图像的损失
        outputs_fake = discriminator(fake_images.detach(), labels)
        loss_D_fake = criterion(outputs_fake, fake_labels)

        # 反向传播和优化
        loss_D = loss_D_real + loss_D_fake
        loss_D.backward()
        optimizer_D.step()

        # ========== 训练生成器 ==========
        optimizer_G.zero_grad()

        # 计算生成器的损失
        outputs_fake = discriminator(fake_images, labels)
        loss_G = criterion(outputs_fake, real_labels)

        # 反向传播和优化
        loss_G.backward()
        optimizer_G.step()


        train_loss_G.append(loss_G.item())
        train_loss_D.append(loss_D.item())
        step = int(optimizer_G.state_dict()['state'][list(optimizer_G.state_dict()['state'].keys())[0]]['step'].numpy())

        if (i + 1) % 100 == 0:
            print('%d step' % (step))

        if (i + 1) % save_steps == 0:
            current_loss_D = np.mean(train_loss_D[-save_steps:])
            current_loss_G = np.mean(train_loss_G[-save_steps:])
            print('current_loss_G: %.5f' % current_loss_G)
            print('current_loss_D: %.5f' % current_loss_D)

            writer.add_scalar(f"current_loss_G", current_loss_G, step)
            writer.add_scalar(f"current_loss_D", current_loss_D, step)


            torch.save({
                'model_state_dict': generator.state_dict(),
                'optimizer_state_dict': optimizer_G.state_dict(),
            }, f'models/{save_model_name}_generator.pth')
            save_model_hyperparameter(save_model_name, unetConfig, BATCH_SIZE, generator_size, step, current_loss_G)
            torch.save({
                'model_state_dict': discriminator.state_dict(),
                'optimizer_state_dict': optimizer_D.state_dict(),
            }, f'models/{save_model_name}_discriminator.pth')
            save_model_hyperparameter(save_model_name, unetConfig, BATCH_SIZE, discriminator_size, step, current_loss_D)

        if step % 10000 == 0:
            torch.save({
                'model_state_dict': generator.state_dict(),
                'optimizer_state_dict': optimizer_G.state_dict(),
            }, f'models/history/{save_model_name}_{step}_generator.pth')
            torch.save({
                'model_state_dict': discriminator.state_dict(),
                'optimizer_state_dict': optimizer_D.state_dict(),
            }, f'models/history/{save_model_name}_{step}_discriminator.pth')

    return generator, discriminator, optimizer_G, optimizer_D