Spaces:
Sleeping
Sleeping
File size: 11,323 Bytes
ae1bdf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import json
import numpy as np
import torch
from torch import nn
from six.moves import xrange
from torch.utils.tensorboard import SummaryWriter
import random
from model.diffusion import ConditionedUnet
from tools import create_key
class Discriminator(nn.Module):
def __init__(self, label_emb_dim):
super(Discriminator, self).__init__()
# 特征图卷积层
self.conv_layers = nn.Sequential(
nn.Conv2d(4, 64, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
nn.AdaptiveAvgPool2d(1), # 添加适应性池化层
nn.Flatten()
)
# 文本嵌入处理
self.text_embedding = nn.Sequential(
nn.Linear(label_emb_dim, 512),
nn.LeakyReLU(0.2, inplace=True)
)
# 判别器最后的全连接层
self.fc = nn.Linear(512 + 512, 1) # 两个512分别来自特征图和文本嵌入
def forward(self, x, text_emb):
x = self.conv_layers(x)
text_emb = self.text_embedding(text_emb)
combined = torch.cat((x, text_emb), dim=1)
output = self.fc(combined)
return output
def evaluate_GAN(device, generator, discriminator, iterator, encodes2embeddings_mapping):
generator.to(device)
discriminator.to(device)
generator.eval()
discriminator.eval()
real_accs = []
fake_accs = []
with torch.no_grad():
for i in range(100):
data, attributes = next(iter(iterator))
data = data.to(device)
conditions = [encodes2embeddings_mapping[create_key(attribute)] for attribute in attributes]
selected_conditions = [random.choice(conditions_of_one_sample) for conditions_of_one_sample in conditions]
selected_conditions = torch.stack(selected_conditions).float().to(device)
# 将数据和标签移至设备
real_images = data.to(device)
labels = selected_conditions.to(device)
# 生成噪声和假图像
noise = torch.randn_like(real_images).to(device)
fake_images = generator(noise)
# 评估鉴别器的性能
real_preds = discriminator(real_images, labels).reshape(-1)
fake_preds = discriminator(fake_images, labels).reshape(-1)
real_acc = (real_preds > 0.5).float().mean().item() # 真实图像的准确率
fake_acc = (fake_preds < 0.5).float().mean().item() # 生成图像的准确率
real_accs.append(real_acc)
fake_accs.append(fake_acc)
# 计算平均准确率
average_real_acc = sum(real_accs) / len(real_accs)
average_fake_acc = sum(fake_accs) / len(fake_accs)
return average_real_acc, average_fake_acc
def get_Generator(model_Config, load_pretrain=False, model_name=None, device="cpu"):
generator = ConditionedUnet(**model_Config)
print(f"Model intialized, size: {sum(p.numel() for p in generator.parameters() if p.requires_grad)}")
generator.to(device)
if load_pretrain:
print(f"Loading weights from models/{model_name}_generator.pth")
checkpoint = torch.load(f'models/{model_name}_generator.pth', map_location=device)
generator.load_state_dict(checkpoint['model_state_dict'])
generator.eval()
return generator
def get_Discriminator(model_Config, load_pretrain=False, model_name=None, device="cpu"):
discriminator = Discriminator(**model_Config)
print(f"Model intialized, size: {sum(p.numel() for p in discriminator.parameters() if p.requires_grad)}")
discriminator.to(device)
if load_pretrain:
print(f"Loading weights from models/{model_name}_discriminator.pth")
checkpoint = torch.load(f'models/{model_name}_discriminator.pth', map_location=device)
discriminator.load_state_dict(checkpoint['model_state_dict'])
discriminator.eval()
return discriminator
def train_GAN(device, init_model_name, unetConfig, BATCH_SIZE, lr_G, lr_D, max_iter, iterator, load_pretrain,
encodes2embeddings_mapping, save_steps, unconditional_condition, uncondition_rate, save_model_name=None):
if save_model_name is None:
save_model_name = init_model_name
def save_model_hyperparameter(model_name, unetConfig, BATCH_SIZE, model_size, current_iter, current_loss):
model_hyperparameter = unetConfig
model_hyperparameter["BATCH_SIZE"] = BATCH_SIZE
model_hyperparameter["lr_G"] = lr_G
model_hyperparameter["lr_D"] = lr_D
model_hyperparameter["model_size"] = model_size
model_hyperparameter["current_iter"] = current_iter
model_hyperparameter["current_loss"] = current_loss
with open(f"models/hyperparameters/{model_name}_GAN.json", "w") as json_file:
json.dump(model_hyperparameter, json_file, ensure_ascii=False, indent=4)
generator = ConditionedUnet(**unetConfig)
discriminator = Discriminator(unetConfig["label_emb_dim"])
generator_size = sum(p.numel() for p in generator.parameters() if p.requires_grad)
discriminator_size = sum(p.numel() for p in discriminator.parameters() if p.requires_grad)
print(f"Generator trainable parameters: {generator_size}, discriminator trainable parameters: {discriminator_size}")
generator.to(device)
discriminator.to(device)
optimizer_G = torch.optim.Adam(filter(lambda p: p.requires_grad, generator.parameters()), lr=lr_G, amsgrad=False)
optimizer_D = torch.optim.Adam(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=lr_D, amsgrad=False)
if load_pretrain:
print(f"Loading weights from models/{init_model_name}_generator.pt")
checkpoint = torch.load(f'models/{init_model_name}_generator.pth')
generator.load_state_dict(checkpoint['model_state_dict'])
optimizer_G.load_state_dict(checkpoint['optimizer_state_dict'])
print(f"Loading weights from models/{init_model_name}_discriminator.pt")
checkpoint = torch.load(f'models/{init_model_name}_discriminator.pth')
discriminator.load_state_dict(checkpoint['model_state_dict'])
optimizer_D.load_state_dict(checkpoint['optimizer_state_dict'])
else:
print("Model initialized.")
if max_iter == 0:
print("Return model directly.")
return generator, discriminator, optimizer_G, optimizer_D
train_loss_G, train_loss_D = [], []
writer = SummaryWriter(f'runs/{save_model_name}_GAN')
# average_real_acc, average_fake_acc = evaluate_GAN(device, generator, discriminator, iterator, encodes2embeddings_mapping)
# print(f"average_real_acc, average_fake_acc: {average_real_acc, average_fake_acc}")
criterion = nn.BCEWithLogitsLoss()
generator.train()
for i in xrange(max_iter):
data, attributes = next(iter(iterator))
data = data.to(device)
conditions = [encodes2embeddings_mapping[create_key(attribute)] for attribute in attributes]
unconditional_condition_copy = torch.tensor(unconditional_condition, dtype=torch.float32).to(device).detach()
selected_conditions = [unconditional_condition_copy if random.random() < uncondition_rate else random.choice(
conditions_of_one_sample) for conditions_of_one_sample in conditions]
batch_size = len(selected_conditions)
selected_conditions = torch.stack(selected_conditions).float().to(device)
# 将数据和标签移至设备
real_images = data.to(device)
labels = selected_conditions.to(device)
# 真实和假的标签
real_labels = torch.ones(batch_size, 1).to(device)
fake_labels = torch.zeros(batch_size, 1).to(device)
# ========== 训练鉴别器 ==========
optimizer_D.zero_grad()
# 计算鉴别器对真实图像的损失
outputs_real = discriminator(real_images, labels)
loss_D_real = criterion(outputs_real, real_labels)
# 生成假图像
noise = torch.randn_like(real_images).to(device)
fake_images = generator(noise, labels)
# 计算鉴别器对假图像的损失
outputs_fake = discriminator(fake_images.detach(), labels)
loss_D_fake = criterion(outputs_fake, fake_labels)
# 反向传播和优化
loss_D = loss_D_real + loss_D_fake
loss_D.backward()
optimizer_D.step()
# ========== 训练生成器 ==========
optimizer_G.zero_grad()
# 计算生成器的损失
outputs_fake = discriminator(fake_images, labels)
loss_G = criterion(outputs_fake, real_labels)
# 反向传播和优化
loss_G.backward()
optimizer_G.step()
train_loss_G.append(loss_G.item())
train_loss_D.append(loss_D.item())
step = int(optimizer_G.state_dict()['state'][list(optimizer_G.state_dict()['state'].keys())[0]]['step'].numpy())
if (i + 1) % 100 == 0:
print('%d step' % (step))
if (i + 1) % save_steps == 0:
current_loss_D = np.mean(train_loss_D[-save_steps:])
current_loss_G = np.mean(train_loss_G[-save_steps:])
print('current_loss_G: %.5f' % current_loss_G)
print('current_loss_D: %.5f' % current_loss_D)
writer.add_scalar(f"current_loss_G", current_loss_G, step)
writer.add_scalar(f"current_loss_D", current_loss_D, step)
torch.save({
'model_state_dict': generator.state_dict(),
'optimizer_state_dict': optimizer_G.state_dict(),
}, f'models/{save_model_name}_generator.pth')
save_model_hyperparameter(save_model_name, unetConfig, BATCH_SIZE, generator_size, step, current_loss_G)
torch.save({
'model_state_dict': discriminator.state_dict(),
'optimizer_state_dict': optimizer_D.state_dict(),
}, f'models/{save_model_name}_discriminator.pth')
save_model_hyperparameter(save_model_name, unetConfig, BATCH_SIZE, discriminator_size, step, current_loss_D)
if step % 10000 == 0:
torch.save({
'model_state_dict': generator.state_dict(),
'optimizer_state_dict': optimizer_G.state_dict(),
}, f'models/history/{save_model_name}_{step}_generator.pth')
torch.save({
'model_state_dict': discriminator.state_dict(),
'optimizer_state_dict': optimizer_D.state_dict(),
}, f'models/history/{save_model_name}_{step}_discriminator.pth')
return generator, discriminator, optimizer_G, optimizer_D
|