Spaces:
Sleeping
Sleeping
File size: 21,004 Bytes
ae1bdf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
import numpy as np
import torch
from tqdm import tqdm
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
class DiffSynthSampler:
def __init__(self, timesteps, beta_start=0.0001, beta_end=0.02, device=None, mute=False,
height=128, max_batchsize=16, max_width=256, channels=4, train_width=64, noise_strategy="repeat"):
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
self.height = height
self.train_width = train_width
self.max_batchsize = max_batchsize
self.max_width = max_width
self.channels = channels
self.num_timesteps = timesteps
self.timestep_map = list(range(self.num_timesteps))
self.betas = np.array(np.linspace(beta_start, beta_end, self.num_timesteps), dtype=np.float64)
self.respaced = False
self.define_beta_schedule()
self.CFG = 1.0
self.mute = mute
self.noise_strategy = noise_strategy
def get_deterministic_noise_tensor_non_repeat(self, batchsize, width, reference_noise=None):
if reference_noise is None:
large_noise_tensor = torch.randn((self.max_batchsize, self.channels, self.height, self.max_width), device=self.device)
else:
assert reference_noise.shape == (batchsize, self.channels, self.height, self.max_width), "reference_noise shape mismatch"
large_noise_tensor = reference_noise
return large_noise_tensor[:batchsize, :, :, :width], None
def get_deterministic_noise_tensor(self, batchsize, width, reference_noise=None):
if self.noise_strategy == "repeat":
noise, concat_points = self.get_deterministic_noise_tensor_repeat(batchsize, width, reference_noise=reference_noise)
return noise, concat_points
else:
noise, concat_points = self.get_deterministic_noise_tensor_non_repeat(batchsize, width, reference_noise=reference_noise)
return noise, concat_points
def get_deterministic_noise_tensor_repeat(self, batchsize, width, reference_noise=None):
# 生成与训练数据长度相等的噪音
if reference_noise is None:
train_noise_tensor = torch.randn((self.max_batchsize, self.channels, self.height, self.train_width), device=self.device)
else:
assert reference_noise.shape == (batchsize, self.channels, self.height, self.train_width), "reference_noise shape mismatch"
train_noise_tensor = reference_noise
release_width = int(self.train_width * 1.0 / 4)
first_part_width = self.train_width - release_width
first_part = train_noise_tensor[:batchsize, :, :, :first_part_width]
release_part = train_noise_tensor[:batchsize, :, :, -release_width:]
# 如果所需 length 小于等于 origin length,去掉 first_part 的中间部分
if width <= self.train_width:
_first_part_head_width = int((width - release_width) / 2)
_first_part_tail_width = width - release_width - _first_part_head_width
all_parts = [first_part[:, :, :, :_first_part_head_width], first_part[:, :, :, -_first_part_tail_width:], release_part]
# 沿第四维度拼接张量
noise_tensor = torch.cat(all_parts, dim=3)
# 记录拼接点的位置
concat_points = [0]
for part in all_parts[:-1]:
next_point = concat_points[-1] + part.size(3)
concat_points.append(next_point)
return noise_tensor, concat_points
# 如果所需 length 大于 origin length,不断地从中间插入 first_part 的中间部分
else:
# 计算需要重复front_width的次数
repeats = (width - release_width) // first_part_width
extra = (width - release_width) % first_part_width
_repeat_first_part_head_width = int(first_part_width / 2)
_repeat_first_part_tail_width = first_part_width - _repeat_first_part_head_width
repeated_first_head_parts = [first_part[:, :, :, :_repeat_first_part_head_width] for _ in range(repeats)]
repeated_first_tail_parts = [first_part[:, :, :, -_repeat_first_part_tail_width:] for _ in range(repeats)]
# 计算起始索引
_middle_part_start_index = (first_part_width - extra) // 2
# 切片张量以获取中间部分
middle_part = first_part[:, :, :, _middle_part_start_index: _middle_part_start_index + extra]
all_parts = repeated_first_head_parts + [middle_part] + repeated_first_tail_parts + [release_part]
# 沿第四维度拼接张量
noise_tensor = torch.cat(all_parts, dim=3)
# 记录拼接点的位置
concat_points = [0]
for part in all_parts[:-1]:
next_point = concat_points[-1] + part.size(3)
concat_points.append(next_point)
return noise_tensor, concat_points
def define_beta_schedule(self):
assert self.respaced == False, "This schedule has already been respaced!"
# define alphas
self.alphas = 1.0 - self.betas
self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recip_alphas = np.sqrt(1.0 / self.alphas)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = (self.betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod))
def activate_classifier_free_guidance(self, CFG, unconditional_condition):
assert (
not unconditional_condition is None) or CFG == 1.0, "For CFG != 1.0, unconditional_condition must be available"
self.CFG = CFG
self.unconditional_condition = unconditional_condition
def respace(self, use_timesteps=None):
if not use_timesteps is None:
last_alpha_cumprod = 1.0
new_betas = []
self.timestep_map = []
for i, _alpha_cumprod in enumerate(self.alphas_cumprod):
if i in use_timesteps:
new_betas.append(1 - _alpha_cumprod / last_alpha_cumprod)
last_alpha_cumprod = _alpha_cumprod
self.timestep_map.append(i)
self.num_timesteps = len(use_timesteps)
self.betas = np.array(new_betas)
self.define_beta_schedule()
self.respaced = True
def generate_linear_noise(self, shape, variance=1.0, first_endpoint=None, second_endpoint=None):
assert shape[1] == self.channels, "shape[1] != self.channels"
assert shape[2] == self.height, "shape[2] != self.height"
noise = torch.empty(*shape, device=self.device)
# 第三种情况:两个端点都不是None,进行线性插值
if first_endpoint is not None and second_endpoint is not None:
for i in range(shape[0]):
alpha = i / (shape[0] - 1) # 插值系数
noise[i] = alpha * second_endpoint + (1 - alpha) * first_endpoint
return noise # 返回插值后的结果,不需要进行后续的均值和方差调整
else:
# 第一个端点不是None
if first_endpoint is not None:
noise[0] = first_endpoint
if shape[0] > 1:
noise[1], _ = self.get_deterministic_noise_tensor(1, shape[3])[0]
else:
noise[0], _ = self.get_deterministic_noise_tensor(1, shape[3])[0]
if shape[0] > 1:
noise[1], _ = self.get_deterministic_noise_tensor(1, shape[3])[0]
# 生成其他的噪声点
for i in range(2, shape[0]):
noise[i] = 2 * noise[i - 1] - noise[i - 2]
# 当只有一个端点被指定时
current_var = noise.var()
stddev_ratio = torch.sqrt(variance / current_var)
noise = noise * stddev_ratio
# 如果第一个端点被指定,进行平移调整
if first_endpoint is not None:
shift = first_endpoint - noise[0]
noise += shift
return noise
def q_sample(self, x_start, t, noise=None):
"""
Diffuse the data for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial data batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
assert x_start.shape[1] == self.channels, "shape[1] != self.channels"
assert x_start.shape[2] == self.height, "shape[2] != self.height"
if noise is None:
# noise = torch.randn_like(x_start)
noise, _ = self.get_deterministic_noise_tensor(x_start.shape[0], x_start.shape[3])
assert noise.shape == x_start.shape
return (
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
* noise
)
@torch.no_grad()
def ddim_sample(self, model, x, t, condition=None, ddim_eta=0.0):
map_tensor = torch.tensor(self.timestep_map, device=t.device, dtype=t.dtype)
mapped_t = map_tensor[t]
# Todo: add CFG
if self.CFG == 1.0:
pred_noise = model(x, mapped_t, condition)
else:
unconditional_condition = self.unconditional_condition.unsqueeze(0).repeat(
*([x.shape[0]] + [1] * len(self.unconditional_condition.shape)))
x_in = torch.cat([x] * 2)
t_in = torch.cat([mapped_t] * 2)
c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = model(x_in, t_in, c_in).chunk(2)
pred_noise = noise_uncond + self.CFG * (noise - noise_uncond)
# Todo: END
alpha_cumprod_t = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
alpha_cumprod_t_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
pred_x0 = (x - torch.sqrt((1. - alpha_cumprod_t)) * pred_noise) / torch.sqrt(alpha_cumprod_t)
sigmas_t = (
ddim_eta
* torch.sqrt((1 - alpha_cumprod_t_prev) / (1 - alpha_cumprod_t))
* torch.sqrt(1 - alpha_cumprod_t / alpha_cumprod_t_prev)
)
pred_dir_xt = torch.sqrt(1 - alpha_cumprod_t_prev - sigmas_t ** 2) * pred_noise
step_noise, _ = self.get_deterministic_noise_tensor(x.shape[0], x.shape[3])
x_prev = torch.sqrt(alpha_cumprod_t_prev) * pred_x0 + pred_dir_xt + sigmas_t * step_noise
return x_prev
def p_sample(self, model, x, t, condition=None, sampler="ddim"):
if sampler == "ddim":
return self.ddim_sample(model, x, t, condition=condition, ddim_eta=0.0)
elif sampler == "ddpm":
return self.ddim_sample(model, x, t, condition=condition, ddim_eta=1.0)
else:
raise NotImplementedError()
def get_dynamic_masks(self, n_masks, shape, concat_points, mask_flexivity=0.8):
release_length = int(self.train_width / 4)
assert shape[3] == (concat_points[-1] + release_length), "shape[3] != (concat_points[-1] + release_length)"
fraction_lengths = [concat_points[i + 1] - concat_points[i] for i in range(len(concat_points) - 1)]
# Todo: remove hard-coding
n_guidance_steps = int(n_masks * mask_flexivity)
n_free_steps = n_masks - n_guidance_steps
masks = []
# Todo: 在一半的 steps 内收缩 mask。也就是说,在后程对 release 以外的区域不做inpaint,而是 img2img
for i in range(n_guidance_steps):
# mask = 1, freeze
step_i_mask = torch.zeros((shape[0], 1, shape[2], shape[3]), dtype=torch.float32).to(self.device)
step_i_mask[:, :, :, -release_length:] = 1.0
for fraction_index in range(len(fraction_lengths)):
_fraction_mask_length = int((n_guidance_steps - 1 - i) / (n_guidance_steps - 1) * fraction_lengths[fraction_index])
if fraction_index == 0:
step_i_mask[:, :, :, :_fraction_mask_length] = 1.0
elif fraction_index == len(fraction_lengths) - 1:
if not _fraction_mask_length == 0:
step_i_mask[:, :, :, -_fraction_mask_length - release_length:] = 1.0
else:
fraction_mask_start_position = int((fraction_lengths[fraction_index] - _fraction_mask_length) / 2)
step_i_mask[:, :, :,
concat_points[fraction_index] + fraction_mask_start_position:concat_points[
fraction_index] + fraction_mask_start_position + _fraction_mask_length] = 1.0
masks.append(step_i_mask)
for i in range(n_free_steps):
step_i_mask = torch.zeros((shape[0], 1, shape[2], shape[3]), dtype=torch.float32).to(self.device)
step_i_mask[:, :, :, -release_length:] = 1.0
masks.append(step_i_mask)
masks.reverse()
return masks
@torch.no_grad()
def p_sample_loop(self, model, shape, initial_noise=None, start_noise_level_ratio=1.0, end_noise_level_ratio=0.0,
return_tensor=False, condition=None, guide_img=None,
mask=None, sampler="ddim", inpaint=False, use_dynamic_mask=False, mask_flexivity=0.8):
assert shape[1] == self.channels, "shape[1] != self.channels"
assert shape[2] == self.height, "shape[2] != self.height"
initial_noise, _ = self.get_deterministic_noise_tensor(shape[0], shape[3], reference_noise=initial_noise)
assert initial_noise.shape == shape, "initial_noise.shape != shape"
start_noise_level_index = int(self.num_timesteps * start_noise_level_ratio) # not included!!!
end_noise_level_index = int(self.num_timesteps * end_noise_level_ratio)
timesteps = reversed(range(end_noise_level_index, start_noise_level_index))
# configure initial img
assert (start_noise_level_ratio == 1.0) or (
not guide_img is None), "A guide_img must be given to sample from a non-pure-noise."
if guide_img is None:
img = initial_noise
else:
guide_img, concat_points = self.get_deterministic_noise_tensor_repeat(shape[0], shape[3], reference_noise=guide_img)
assert guide_img.shape == shape, "guide_img.shape != shape"
if start_noise_level_index > 0:
t = torch.full((shape[0],), start_noise_level_index-1, device=self.device).long() # -1 for start_noise_level_index not included
img = self.q_sample(guide_img, t, noise=initial_noise)
else:
print("Zero noise added to the guidance latent representation.")
img = guide_img
# get masks
n_masks = start_noise_level_index - end_noise_level_index
if use_dynamic_mask:
masks = self.get_dynamic_masks(n_masks, shape, concat_points, mask_flexivity)
else:
masks = [mask for _ in range(n_masks)]
imgs = [img]
current_mask = None
for i in tqdm(timesteps, total=start_noise_level_index - end_noise_level_index, disable=self.mute):
# if i == 3:
# return [img], initial_noise # 第1排,第1列
img = self.p_sample(model, img, torch.full((shape[0],), i, device=self.device, dtype=torch.long),
condition=condition,
sampler=sampler)
# if i == 3:
# return [img], initial_noise # 第1排,第2列
if inpaint:
if i > 0:
t = torch.full((shape[0],), int(i-1), device=self.device).long()
img_noise_t = self.q_sample(guide_img, t, noise=initial_noise)
# if i == 3:
# return [img_noise_t], initial_noise # 第2排,第2列
current_mask = masks.pop()
img = current_mask * img_noise_t + (1 - current_mask) * img
# if i == 3:
# return [img], initial_noise # 第1.5排,最后1列
else:
img = current_mask * guide_img + (1 - current_mask) * img
if return_tensor:
imgs.append(img)
else:
imgs.append(img.cpu().numpy())
return imgs, initial_noise
def sample(self, model, shape, return_tensor=False, condition=None, sampler="ddim", initial_noise=None, seed=None):
if not seed is None:
torch.manual_seed(seed)
return self.p_sample_loop(model, shape, initial_noise=initial_noise, start_noise_level_ratio=1.0, end_noise_level_ratio=0.0,
return_tensor=return_tensor, condition=condition, sampler=sampler)
def interpolate(self, model, shape, variance, first_endpoint=None, second_endpoint=None, return_tensor=False,
condition=None, sampler="ddim", seed=None):
if not seed is None:
torch.manual_seed(seed)
linear_noise = self.generate_linear_noise(shape, variance, first_endpoint=first_endpoint,
second_endpoint=second_endpoint)
return self.p_sample_loop(model, shape, initial_noise=linear_noise, start_noise_level_ratio=1.0,
end_noise_level_ratio=0.0,
return_tensor=return_tensor, condition=condition, sampler=sampler)
def img_guided_sample(self, model, shape, noising_strength, guide_img, return_tensor=False, condition=None,
sampler="ddim", initial_noise=None, seed=None):
if not seed is None:
torch.manual_seed(seed)
assert guide_img.shape[-1] == shape[-1], "guide_img.shape[:-1] != shape[:-1]"
return self.p_sample_loop(model, shape, start_noise_level_ratio=noising_strength, end_noise_level_ratio=0.0,
return_tensor=return_tensor, condition=condition, sampler=sampler,
guide_img=guide_img, initial_noise=initial_noise)
def inpaint_sample(self, model, shape, noising_strength, guide_img, mask, return_tensor=False, condition=None,
sampler="ddim", initial_noise=None, use_dynamic_mask=False, end_noise_level_ratio=0.0, seed=None,
mask_flexivity=0.8):
if not seed is None:
torch.manual_seed(seed)
return self.p_sample_loop(model, shape, start_noise_level_ratio=noising_strength, end_noise_level_ratio=end_noise_level_ratio,
return_tensor=return_tensor, condition=condition, guide_img=guide_img, mask=mask,
sampler=sampler, inpaint=True, initial_noise=initial_noise, use_dynamic_mask=use_dynamic_mask,
mask_flexivity=mask_flexivity) |