File size: 21,004 Bytes
ae1bdf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import numpy as np
import torch
from tqdm import tqdm


def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """

    Extract values from a 1-D numpy array for a batch of indices.



    :param arr: the 1-D numpy array.

    :param timesteps: a tensor of indices into the array to extract.

    :param broadcast_shape: a larger shape of K dimensions with the batch

                            dimension equal to the length of timesteps.

    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.

    """
    res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


class DiffSynthSampler:

    def __init__(self, timesteps, beta_start=0.0001, beta_end=0.02, device=None, mute=False,

                 height=128, max_batchsize=16, max_width=256, channels=4, train_width=64, noise_strategy="repeat"):
        if device is None:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"
        else:
            self.device = device
        self.height = height
        self.train_width = train_width
        self.max_batchsize = max_batchsize
        self.max_width = max_width
        self.channels = channels
        self.num_timesteps = timesteps
        self.timestep_map = list(range(self.num_timesteps))
        self.betas = np.array(np.linspace(beta_start, beta_end, self.num_timesteps), dtype=np.float64)
        self.respaced = False
        self.define_beta_schedule()
        self.CFG = 1.0
        self.mute = mute
        self.noise_strategy = noise_strategy

    def get_deterministic_noise_tensor_non_repeat(self, batchsize, width, reference_noise=None):
        if reference_noise is None:
            large_noise_tensor = torch.randn((self.max_batchsize, self.channels, self.height, self.max_width), device=self.device)
        else:
            assert reference_noise.shape == (batchsize, self.channels, self.height, self.max_width), "reference_noise shape mismatch"
            large_noise_tensor = reference_noise
        return large_noise_tensor[:batchsize, :, :, :width], None

    def get_deterministic_noise_tensor(self, batchsize, width, reference_noise=None):
        if self.noise_strategy == "repeat":
            noise, concat_points = self.get_deterministic_noise_tensor_repeat(batchsize, width, reference_noise=reference_noise)
            return noise, concat_points
        else:
            noise, concat_points = self.get_deterministic_noise_tensor_non_repeat(batchsize, width, reference_noise=reference_noise)
            return noise, concat_points


    def get_deterministic_noise_tensor_repeat(self, batchsize, width, reference_noise=None):
        # 生成与训练数据长度相等的噪音
        if reference_noise is None:
            train_noise_tensor = torch.randn((self.max_batchsize, self.channels, self.height, self.train_width), device=self.device)
        else:
            assert reference_noise.shape == (batchsize, self.channels, self.height, self.train_width), "reference_noise shape mismatch"
            train_noise_tensor = reference_noise

        release_width = int(self.train_width * 1.0 / 4)
        first_part_width = self.train_width - release_width

        first_part = train_noise_tensor[:batchsize, :, :, :first_part_width]
        release_part = train_noise_tensor[:batchsize, :, :, -release_width:]

        # 如果所需 length 小于等于 origin length,去掉 first_part 的中间部分
        if width <= self.train_width:
            _first_part_head_width = int((width - release_width) / 2)
            _first_part_tail_width = width - release_width - _first_part_head_width
            all_parts = [first_part[:, :, :, :_first_part_head_width], first_part[:, :, :, -_first_part_tail_width:], release_part]

            # 沿第四维度拼接张量
            noise_tensor = torch.cat(all_parts, dim=3)

            # 记录拼接点的位置
            concat_points = [0]
            for part in all_parts[:-1]:
                next_point = concat_points[-1] + part.size(3)
                concat_points.append(next_point)

            return noise_tensor, concat_points

        # 如果所需 length 大于 origin length,不断地从中间插入 first_part 的中间部分
        else:
            # 计算需要重复front_width的次数
            repeats = (width - release_width) // first_part_width
            extra = (width - release_width) % first_part_width

            _repeat_first_part_head_width = int(first_part_width / 2)
            _repeat_first_part_tail_width = first_part_width - _repeat_first_part_head_width

            repeated_first_head_parts = [first_part[:, :, :, :_repeat_first_part_head_width] for _ in range(repeats)]
            repeated_first_tail_parts = [first_part[:, :, :, -_repeat_first_part_tail_width:] for _ in range(repeats)]

            # 计算起始索引
            _middle_part_start_index = (first_part_width - extra) // 2
            # 切片张量以获取中间部分
            middle_part = first_part[:, :, :, _middle_part_start_index: _middle_part_start_index + extra]

            all_parts = repeated_first_head_parts + [middle_part] + repeated_first_tail_parts + [release_part]

            # 沿第四维度拼接张量
            noise_tensor = torch.cat(all_parts, dim=3)

            # 记录拼接点的位置
            concat_points = [0]
            for part in all_parts[:-1]:
                next_point = concat_points[-1] + part.size(3)
                concat_points.append(next_point)

            return noise_tensor, concat_points

    def define_beta_schedule(self):
        assert self.respaced == False, "This schedule has already been respaced!"
        # define alphas
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
        self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
        self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
        self.sqrt_recip_alphas = np.sqrt(1.0 / self.alphas)
        self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        self.posterior_variance = (self.betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod))

    def activate_classifier_free_guidance(self, CFG, unconditional_condition):
        assert (
                   not unconditional_condition is None) or CFG == 1.0, "For CFG != 1.0, unconditional_condition must be available"
        self.CFG = CFG
        self.unconditional_condition = unconditional_condition

    def respace(self, use_timesteps=None):
        if not use_timesteps is None:
            last_alpha_cumprod = 1.0
            new_betas = []
            self.timestep_map = []
            for i, _alpha_cumprod in enumerate(self.alphas_cumprod):
                if i in use_timesteps:
                    new_betas.append(1 - _alpha_cumprod / last_alpha_cumprod)
                    last_alpha_cumprod = _alpha_cumprod
                    self.timestep_map.append(i)
            self.num_timesteps = len(use_timesteps)
            self.betas = np.array(new_betas)
            self.define_beta_schedule()
            self.respaced = True

    def generate_linear_noise(self, shape, variance=1.0, first_endpoint=None, second_endpoint=None):
        assert shape[1] == self.channels, "shape[1] != self.channels"
        assert shape[2] == self.height, "shape[2] != self.height"
        noise = torch.empty(*shape, device=self.device)

        # 第三种情况:两个端点都不是None,进行线性插值
        if first_endpoint is not None and second_endpoint is not None:
            for i in range(shape[0]):
                alpha = i / (shape[0] - 1)  # 插值系数
                noise[i] = alpha * second_endpoint + (1 - alpha) * first_endpoint
            return noise  # 返回插值后的结果,不需要进行后续的均值和方差调整
        else:
            # 第一个端点不是None
            if first_endpoint is not None:
                noise[0] = first_endpoint
                if shape[0] > 1:
                    noise[1], _ = self.get_deterministic_noise_tensor(1, shape[3])[0]
            else:
                noise[0], _ = self.get_deterministic_noise_tensor(1, shape[3])[0]
                if shape[0] > 1:
                    noise[1], _ = self.get_deterministic_noise_tensor(1, shape[3])[0]

            # 生成其他的噪声点
            for i in range(2, shape[0]):
                noise[i] = 2 * noise[i - 1] - noise[i - 2]

        # 当只有一个端点被指定时
        current_var = noise.var()
        stddev_ratio = torch.sqrt(variance / current_var)
        noise = noise * stddev_ratio

        # 如果第一个端点被指定,进行平移调整
        if first_endpoint is not None:
            shift = first_endpoint - noise[0]
            noise += shift

        return noise

    def q_sample(self, x_start, t, noise=None):
        """

        Diffuse the data for a given number of diffusion steps.



        In other words, sample from q(x_t | x_0).



        :param x_start: the initial data batch.

        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.

        :param noise: if specified, the split-out normal noise.

        :return: A noisy version of x_start.

        """
        assert x_start.shape[1] == self.channels, "shape[1] != self.channels"
        assert x_start.shape[2] == self.height, "shape[2] != self.height"

        if noise is None:
            # noise = torch.randn_like(x_start)
            noise, _ = self.get_deterministic_noise_tensor(x_start.shape[0], x_start.shape[3])

        assert noise.shape == x_start.shape
        return (
                _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
                + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
                * noise
        )

    @torch.no_grad()
    def ddim_sample(self, model, x, t, condition=None, ddim_eta=0.0):
        map_tensor = torch.tensor(self.timestep_map, device=t.device, dtype=t.dtype)
        mapped_t = map_tensor[t]

        # Todo: add CFG

        if self.CFG == 1.0:
            pred_noise = model(x, mapped_t, condition)
        else:
            unconditional_condition = self.unconditional_condition.unsqueeze(0).repeat(
                *([x.shape[0]] + [1] * len(self.unconditional_condition.shape)))
            x_in = torch.cat([x] * 2)
            t_in = torch.cat([mapped_t] * 2)
            c_in = torch.cat([unconditional_condition, condition])
            noise_uncond, noise = model(x_in, t_in, c_in).chunk(2)
            pred_noise = noise_uncond + self.CFG * (noise - noise_uncond)

        # Todo: END

        alpha_cumprod_t = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
        alpha_cumprod_t_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)

        pred_x0 = (x - torch.sqrt((1. - alpha_cumprod_t)) * pred_noise) / torch.sqrt(alpha_cumprod_t)

        sigmas_t = (
                ddim_eta
                * torch.sqrt((1 - alpha_cumprod_t_prev) / (1 - alpha_cumprod_t))
                * torch.sqrt(1 - alpha_cumprod_t / alpha_cumprod_t_prev)
        )

        pred_dir_xt = torch.sqrt(1 - alpha_cumprod_t_prev - sigmas_t ** 2) * pred_noise


        step_noise, _ = self.get_deterministic_noise_tensor(x.shape[0], x.shape[3])


        x_prev = torch.sqrt(alpha_cumprod_t_prev) * pred_x0 + pred_dir_xt + sigmas_t * step_noise

        return x_prev

    def p_sample(self, model, x, t, condition=None, sampler="ddim"):
        if sampler == "ddim":
            return self.ddim_sample(model, x, t, condition=condition, ddim_eta=0.0)
        elif sampler == "ddpm":
            return self.ddim_sample(model, x, t, condition=condition, ddim_eta=1.0)
        else:
            raise NotImplementedError()

    def get_dynamic_masks(self, n_masks, shape, concat_points, mask_flexivity=0.8):
        release_length = int(self.train_width / 4)
        assert shape[3] == (concat_points[-1] + release_length), "shape[3] != (concat_points[-1] + release_length)"

        fraction_lengths = [concat_points[i + 1] - concat_points[i] for i in range(len(concat_points) - 1)]

        # Todo: remove hard-coding
        n_guidance_steps = int(n_masks * mask_flexivity)
        n_free_steps = n_masks - n_guidance_steps

        masks = []
        # Todo: 在一半的 steps 内收缩 mask。也就是说,在后程对 release 以外的区域不做inpaint,而是 img2img
        for i in range(n_guidance_steps):
            # mask = 1, freeze
            step_i_mask = torch.zeros((shape[0], 1, shape[2], shape[3]), dtype=torch.float32).to(self.device)
            step_i_mask[:, :, :, -release_length:] = 1.0

            for fraction_index in range(len(fraction_lengths)):

                _fraction_mask_length = int((n_guidance_steps - 1 - i) / (n_guidance_steps - 1) * fraction_lengths[fraction_index])

                if fraction_index == 0:
                    step_i_mask[:, :, :, :_fraction_mask_length] = 1.0
                elif fraction_index == len(fraction_lengths) - 1:
                    if not _fraction_mask_length == 0:
                        step_i_mask[:, :, :, -_fraction_mask_length - release_length:] = 1.0
                else:
                    fraction_mask_start_position = int((fraction_lengths[fraction_index] - _fraction_mask_length) / 2)

                    step_i_mask[:, :, :,
                    concat_points[fraction_index] + fraction_mask_start_position:concat_points[
                                                                                     fraction_index] + fraction_mask_start_position + _fraction_mask_length] = 1.0
            masks.append(step_i_mask)

        for i in range(n_free_steps):
            step_i_mask = torch.zeros((shape[0], 1, shape[2], shape[3]), dtype=torch.float32).to(self.device)
            step_i_mask[:, :, :, -release_length:] = 1.0
            masks.append(step_i_mask)

        masks.reverse()
        return masks

    @torch.no_grad()
    def p_sample_loop(self, model, shape, initial_noise=None, start_noise_level_ratio=1.0, end_noise_level_ratio=0.0,

                      return_tensor=False, condition=None, guide_img=None,

                      mask=None, sampler="ddim", inpaint=False, use_dynamic_mask=False, mask_flexivity=0.8):

        assert shape[1] == self.channels, "shape[1] != self.channels"
        assert shape[2] == self.height, "shape[2] != self.height"

        initial_noise, _ = self.get_deterministic_noise_tensor(shape[0], shape[3], reference_noise=initial_noise)
        assert initial_noise.shape == shape, "initial_noise.shape != shape"

        start_noise_level_index = int(self.num_timesteps * start_noise_level_ratio) # not included!!!
        end_noise_level_index = int(self.num_timesteps * end_noise_level_ratio)

        timesteps = reversed(range(end_noise_level_index, start_noise_level_index))

        # configure initial img
        assert (start_noise_level_ratio == 1.0) or (
            not guide_img is None), "A guide_img must be given to sample from a non-pure-noise."

        if guide_img is None:
            img = initial_noise
        else:
            guide_img, concat_points = self.get_deterministic_noise_tensor_repeat(shape[0], shape[3], reference_noise=guide_img)
            assert guide_img.shape == shape, "guide_img.shape != shape"

            if start_noise_level_index > 0:
                t = torch.full((shape[0],), start_noise_level_index-1, device=self.device).long()   # -1 for start_noise_level_index not included
                img = self.q_sample(guide_img, t, noise=initial_noise)
            else:
                print("Zero noise added to the guidance latent representation.")
                img = guide_img

        # get masks
        n_masks = start_noise_level_index - end_noise_level_index
        if use_dynamic_mask:
            masks = self.get_dynamic_masks(n_masks, shape, concat_points, mask_flexivity)
        else:
            masks = [mask for _ in range(n_masks)]

        imgs = [img]
        current_mask = None


        for i in tqdm(timesteps, total=start_noise_level_index - end_noise_level_index, disable=self.mute):

            # if i == 3:
            #     return [img], initial_noise  # 第1排,第1列

            img = self.p_sample(model, img, torch.full((shape[0],), i, device=self.device, dtype=torch.long),
                                condition=condition,
                                sampler=sampler)
            # if i == 3:
            #     return [img], initial_noise  # 第1排,第2列

            if inpaint:
                if i > 0:
                    t = torch.full((shape[0],), int(i-1), device=self.device).long()
                    img_noise_t = self.q_sample(guide_img, t, noise=initial_noise)
                    # if i == 3:
                    #     return [img_noise_t], initial_noise  # 第2排,第2列
                    current_mask = masks.pop()
                    img = current_mask * img_noise_t + (1 - current_mask) * img
                    # if i == 3:
                    #     return [img], initial_noise  # 第1.5排,最后1列
                else:
                    img = current_mask * guide_img + (1 - current_mask) * img

            if return_tensor:
                imgs.append(img)
            else:
                imgs.append(img.cpu().numpy())

        return imgs, initial_noise


    def sample(self, model, shape, return_tensor=False, condition=None, sampler="ddim", initial_noise=None, seed=None):
        if not seed is None:
            torch.manual_seed(seed)
        return self.p_sample_loop(model, shape, initial_noise=initial_noise, start_noise_level_ratio=1.0, end_noise_level_ratio=0.0,
                                  return_tensor=return_tensor, condition=condition, sampler=sampler)

    def interpolate(self, model, shape, variance, first_endpoint=None, second_endpoint=None, return_tensor=False,

                    condition=None, sampler="ddim", seed=None):
        if not seed is None:
            torch.manual_seed(seed)
        linear_noise = self.generate_linear_noise(shape, variance, first_endpoint=first_endpoint,
                                                  second_endpoint=second_endpoint)
        return self.p_sample_loop(model, shape, initial_noise=linear_noise, start_noise_level_ratio=1.0,
                                  end_noise_level_ratio=0.0,
                                  return_tensor=return_tensor, condition=condition, sampler=sampler)

    def img_guided_sample(self, model, shape, noising_strength, guide_img, return_tensor=False, condition=None,

                          sampler="ddim", initial_noise=None, seed=None):
        if not seed is None:
            torch.manual_seed(seed)
        assert guide_img.shape[-1] == shape[-1], "guide_img.shape[:-1] != shape[:-1]"
        return self.p_sample_loop(model, shape, start_noise_level_ratio=noising_strength, end_noise_level_ratio=0.0,
                                  return_tensor=return_tensor, condition=condition, sampler=sampler,
                                  guide_img=guide_img, initial_noise=initial_noise)

    def inpaint_sample(self, model, shape, noising_strength, guide_img, mask, return_tensor=False, condition=None,

                       sampler="ddim", initial_noise=None, use_dynamic_mask=False, end_noise_level_ratio=0.0, seed=None,

                       mask_flexivity=0.8):
        if not seed is None:
            torch.manual_seed(seed)
        return self.p_sample_loop(model, shape, start_noise_level_ratio=noising_strength, end_noise_level_ratio=end_noise_level_ratio,
                                  return_tensor=return_tensor, condition=condition, guide_img=guide_img, mask=mask,
                                  sampler=sampler, inpaint=True, initial_noise=initial_noise, use_dynamic_mask=use_dynamic_mask,
                                  mask_flexivity=mask_flexivity)