File size: 10,965 Bytes
1ecb721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os

import librosa
import numpy as np
import torch
from tqdm import tqdm

from metrics.pipelines import sample_pipeline, inpaint_pipeline, sample_pipeline_GAN
from metrics.pipelines_STFT import sample_pipeline_STFT, sample_pipeline_GAN_STFT
from tools import rms_normalize, pad_STFT, encode_stft
from webUI.natural_language_guided.utils import InputBatch2Encode_STFT

def get_inception_score_for_AudioLDM(device, timbre_encoder, VAE, AudioLDM_signals_directory_path):
    VAE_encoder, VAE_quantizer, VAE_decoder = VAE._encoder, VAE._vq_vae, VAE._decoder

    diffuSynth_probabilities = []

    # Step 1: Load all wav files in AudioLDM_signals_directory_path
    AudioLDM_signals = []
    signal_lengths = set()
    target_length = 4 * 16000  # 4 seconds * 16000 samples per second

    for file_name in os.listdir(AudioLDM_signals_directory_path):
        if file_name.endswith('.wav') and not file_name.startswith('._'):
            file_path = os.path.join(AudioLDM_signals_directory_path, file_name)
            signal, sr = librosa.load(file_path, sr=16000)  # Load audio file with sampling rate 16000
            if len(signal) >= target_length:
                signal = signal[:target_length]  # Take only the first 4 seconds
            else:
                raise ValueError(f"The file {file_name} is shorter than 4 seconds.")
            # Normalize
            AudioLDM_signals.append(rms_normalize(signal))
            signal_lengths.add(len(signal))

    # Step 2: Check if all signals have the same length
    if len(signal_lengths) != 1:
        raise ValueError("Not all signals have the same length. Please ensure all audio files are of the same length.")

    encoded_audios = []
    for origin_audio in AudioLDM_signals:
        D = librosa.stft(origin_audio, n_fft=1024, hop_length=256, win_length=1024)
        padded_D = pad_STFT(D)
        encoded_D = encode_stft(padded_D)
        encoded_audios.append(encoded_D)
    encoded_audios_np = np.array(encoded_audios)
    origin_spectrogram_batch_tensor = torch.from_numpy(encoded_audios_np).float().to(device)

    # Step 3: Reshape to signal_batches [number_batches, batch_size=8, signal_length]
    batch_size = 8
    num_batches = int(np.ceil(origin_spectrogram_batch_tensor.shape[0] / batch_size))
    spectrogram_batches = []
    for i in range(num_batches):
        batch = origin_spectrogram_batch_tensor[i * batch_size:(i + 1) * batch_size]
        spectrogram_batches.append(batch)

    for spectrogram_batch in tqdm(spectrogram_batches):
        spectrogram_batch = spectrogram_batch.to(device)
        _, _, _, _, quantized_latent_representations = InputBatch2Encode_STFT(VAE_encoder, spectrogram_batch, quantizer=VAE_quantizer, squared=False)
        quantized_latent_representations = quantized_latent_representations
        feature, instrument_logits, instrument_family_logits, velocity_logits, qualities = timbre_encoder(quantized_latent_representations)
        probabilities = torch.nn.functional.softmax(instrument_logits, dim=1)

        diffuSynth_probabilities.extend(probabilities.to("cpu").detach().numpy())

    return inception_score(np.array(diffuSynth_probabilities))


# def get_inception_score_for_AudioLDM(device, timbre_encoder, VAE, AudioLDM_signals_directory_path):
#     VAE_encoder, VAE_quantizer, VAE_decoder = VAE._encoder, VAE._vq_vae, VAE._decoder
#
#     diffuSynth_probabilities = []
#
#     # Step 1: Load all wav files in AudioLDM_signals_directory_path
#     AudioLDM_signals = []
#     signal_lengths = set()
#
#     for file_name in os.listdir(AudioLDM_signals_directory_path):
#         if file_name.endswith('.wav'):
#             file_path = os.path.join(AudioLDM_signals_directory_path, file_name)
#             signal, sr = librosa.load(file_path, sr=16000)  # Load audio file with sampling rate 16000
#             # Normalize
#             AudioLDM_signals.append(rms_normalize(signal))
#             signal_lengths.add(len(signal))
#
#     # Step 2: Check if all signals have the same length
#     if len(signal_lengths) != 1:
#         raise ValueError("Not all signals have the same length. Please ensure all audio files are of the same length.")
#
#     encoded_audios = []
#     for origin_audio in AudioLDM_signals:
#         D = librosa.stft(origin_audio, n_fft=1024, hop_length=256, win_length=1024)
#         padded_D = pad_STFT(D)
#         encoded_D = encode_stft(padded_D)
#         encoded_audios.append(encoded_D)
#     encoded_audios_np = np.array(encoded_audios)
#     origin_spectrogram_batch_tensor = torch.from_numpy(encoded_audios_np).float().to(device)
#
#
#     # Step 3: Reshape to signal_batches [number_batches, batch_size=8, signal_length]
#     batch_size = 8
#     num_batches = int(np.ceil(origin_spectrogram_batch_tensor.shape[0] / batch_size))
#     spectrogram_batches = []
#     for i in range(num_batches):
#         batch = origin_spectrogram_batch_tensor[i * batch_size:(i + 1) * batch_size]
#         spectrogram_batches.append(batch)
#
#
#     for spectrogram_batch in tqdm(spectrogram_batches):
#         spectrogram_batch = spectrogram_batch.to(device)
#         _, _, _, _, quantized_latent_representations = InputBatch2Encode_STFT(VAE_encoder, spectrogram_batch, quantizer=VAE_quantizer,squared=False)
#         quantized_latent_representations = quantized_latent_representations
#         feature, instrument_logits, instrument_family_logits, velocity_logits, qualities = timbre_encoder(quantized_latent_representations)
#         probabilities = torch.nn.functional.softmax(instrument_logits, dim=1)
#
#         diffuSynth_probabilities.extend(probabilities.to("cpu").detach().numpy())
#
#     return inception_score(np.array(diffuSynth_probabilities))


def get_inception_score(device, uNet, VAE, MMM, CLAP_tokenizer, timbre_encoder, num_batches, positive_prompts, negative_prompts="", CFG=1, sample_steps=10, task="spectrograms"):
    diffuSynth_probabilities = []

    if task == "spectrograms":
        pipe = sample_pipeline
    elif task == "STFT":
        pipe = sample_pipeline_STFT
    else:
        raise NotImplementedError

    for _ in tqdm(range(num_batches)):
        quantized_latent_representations = pipe(device, uNet, VAE, MMM, CLAP_tokenizer,
                                                           positive_prompts=positive_prompts, negative_prompts=negative_prompts,
                                                      batchsize=8, sample_steps=sample_steps, CFG=CFG, seed=None)

        quantized_latent_representations = quantized_latent_representations.to(device)
        feature, instrument_logits, instrument_family_logits, velocity_logits, qualities = timbre_encoder(quantized_latent_representations)
        probabilities = torch.nn.functional.softmax(instrument_logits, dim=1)

        diffuSynth_probabilities.extend(probabilities.to("cpu").detach().numpy())

    return inception_score(np.array(diffuSynth_probabilities))


def get_inception_score_GAN(device, gan_generator, VAE, MMM, CLAP_tokenizer, timbre_encoder, num_batches, positive_prompts, negative_prompts="", CFG=1, sample_steps=10, task="spectrograms"):
    diffuSynth_probabilities = []

    if task == "spectrograms":
        pipe = sample_pipeline_GAN
    elif task == "STFT":
        pipe = sample_pipeline_GAN_STFT
    else:
        raise NotImplementedError

    for _ in tqdm(range(num_batches)):
        quantized_latent_representations = pipe(device, gan_generator, VAE, MMM, CLAP_tokenizer,
                                                           positive_prompts=positive_prompts, negative_prompts=negative_prompts,
                                                      batchsize=8, sample_steps=sample_steps, CFG=CFG, seed=None)

        quantized_latent_representations = quantized_latent_representations.to(device)
        feature, instrument_logits, instrument_family_logits, velocity_logits, qualities = timbre_encoder(quantized_latent_representations)
        probabilities = torch.nn.functional.softmax(instrument_logits, dim=1)

        diffuSynth_probabilities.extend(probabilities.to("cpu").detach().numpy())

    return inception_score(np.array(diffuSynth_probabilities))


def predict_qualities_with_diffuSynth_sample(device, uNet, VAE, MMM, CLAP_tokenizer, timbre_encoder, num_batches, positive_prompts, negative_prompts="", CFG=6, sample_steps=10):
    diffuSynth_qualities = []
    for _ in tqdm(range(num_batches)):
        quantized_latent_representations = sample_pipeline(device, uNet, VAE, MMM, CLAP_tokenizer,
                                                           positive_prompts=positive_prompts, negative_prompts=negative_prompts,
                                                      batchsize=8, sample_steps=sample_steps, CFG=CFG, seed=None)

        quantized_latent_representations = quantized_latent_representations.to(device)
        feature, instrument_logits, instrument_family_logits, velocity_logits, qualities = timbre_encoder(quantized_latent_representations)
        qualities = qualities.to("cpu").detach().numpy()
        # qualities = np.where(qualities > 0.5, 1, 0)

        diffuSynth_qualities.extend(qualities)

    return np.mean(diffuSynth_qualities, axis=0)


def generate_probabilities_with_diffuSynth_inpaint(device, uNet, VAE, MMM, CLAP_tokenizer, timbre_encoder, num_batches, guidance, duration, use_dynamic_mask, noising_strength, positive_prompts, negative_prompts="", CFG=6, sample_steps=10):

    inpaint_probabilities, signals = [], []
    for _ in tqdm(range(num_batches)):
        quantized_latent_representations, _, rec_signals = inpaint_pipeline(device, uNet, VAE, MMM, CLAP_tokenizer,
                                                                            use_dynamic_mask=use_dynamic_mask, noising_strength=noising_strength, guidance=guidance,
                    positive_prompts=positive_prompts, negative_prompts=negative_prompts, batchsize=8, sample_steps=sample_steps, CFG=CFG, seed=None, duration=duration, mask_flexivity=0.999,
                    return_latent=False)

        quantized_latent_representations = quantized_latent_representations.to(device)
        feature, instrument_logits, instrument_family_logits, velocity_logits, qualities = timbre_encoder(quantized_latent_representations)
        probabilities = torch.nn.functional.softmax(instrument_logits, dim=1)

        inpaint_probabilities.extend(probabilities.to("cpu").detach().numpy())
        signals.extend(rec_signals)

    return np.array(inpaint_probabilities), signals


def inception_score(pred):

    # 计算每个图像的条件概率分布 P(y|x)
    pyx = pred / np.sum(pred, axis=1, keepdims=True)

    # 计算整个数据集的边缘概率分布 P(y)
    py = np.mean(pyx, axis=0, keepdims=True)

    # 计算KL散度
    kl_div = pyx * (np.log(pyx + 1e-11) - np.log(py + 1e-11))

    # 对所有图像求和并平均
    kl_div_sum = np.sum(kl_div, axis=1)
    score = np.exp(np.mean(kl_div_sum))
    return score