Spaces:
Sleeping
Sleeping
File size: 774 Bytes
d19ff3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import torch
import torchvision
from torch import nn
def create_effnetb2_model(num_classes: int=3,
seed:int=42):
#1,2,3 create weights transforms and model
#get effnets weight
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
#get effnets transforms
transforms = weights.transforms()
#Setup pretrained model
model = torchvision.models.efficientnet_b2(weights=weights)
#4 Freeze all layers in the base model
for param in model.parameters():
param.requires_grad = False
#5. Change classifier head to our desired num_classes
torch.manual_seed(seed)
model.classifier = nn.Sequential(
nn.Dropout(p=0.3,inplace=True),
nn.Linear(in_features= 1408, out_features= num_classes))
return model,transforms
|