Spaces:
Sleeping
Sleeping
File size: 4,973 Bytes
97132db af5935b 567a60e 099f191 af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b 97132db af5935b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# libraries
from flask import Flask, render_template, request, redirect, url_for, flash, session, send_from_directory
import os
import logging
from utility.utils import extract_text_from_images, Data_Extractor, json_to_llm_str, process_extracted_text, process_resume_data
from backup.backup import NER_Model
from paddleocr import PaddleOCR
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
])
# Flask App
app = Flask(__name__)
app.secret_key = 'your_secret_key'
app.config['UPLOAD_FOLDER'] = 'uploads/'
UPLOAD_FOLDER = 'static/uploads/'
RESULT_FOLDER = 'static/results/'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(RESULT_FOLDER, exist_ok=True)
if not os.path.exists(app.config['UPLOAD_FOLDER']):
os.makedirs(app.config['UPLOAD_FOLDER'])
@app.route('/')
def index():
uploaded_files = session.get('uploaded_files', [])
logging.info(f"Accessed index page, uploaded files: {uploaded_files}")
return render_template('index.html', uploaded_files=uploaded_files)
@app.route('/upload', methods=['POST'])
def upload_file():
if 'files' not in request.files:
flash('No file part')
logging.warning("No file part found in the request")
return redirect(request.url)
files = request.files.getlist('files') # Get multiple files
if not files or all(file.filename == '' for file in files):
flash('No selected files')
logging.warning("No files selected for upload")
return redirect(request.url)
uploaded_files = []
for file in files:
if file:
filename = file.filename
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
uploaded_files.append(filename)
logging.info(f"Uploaded file: {filename}")
session['uploaded_files'] = uploaded_files
flash('Files successfully uploaded')
logging.info(f"Files successfully uploaded: {uploaded_files}")
return redirect(url_for('index'))
@app.route('/remove_file')
def remove_file():
uploaded_files = session.get('uploaded_files', [])
for filename in uploaded_files:
os.remove(os.path.join(app.config['UPLOAD_FOLDER'], filename))
logging.info(f"Removed file: {filename}")
session.pop('uploaded_files', None)
flash('Files successfully removed')
logging.info("All uploaded files removed")
return redirect(url_for('index'))
@app.route('/process', methods=['POST'])
def process_file():
uploaded_files = session.get('uploaded_files', [])
if not uploaded_files:
flash('No files selected for processing')
logging.warning("No files selected for processing")
return redirect(url_for('index'))
# Create a list of file paths for the extracted text function
file_paths = [os.path.join(app.config['UPLOAD_FOLDER'], filename) for filename in uploaded_files]
logging.info(f"Processing files: {file_paths}")
try:
# Extract text from all images
extracted_text, processed_Img = extract_text_from_images(file_paths, RESULT_FOLDER)
logging.info(f"Extracted text: {extracted_text}")
logging.info(f"Processed images: {processed_Img}")
# Call the Gemma model API and get the professional data
llmText = json_to_llm_str(extracted_text)
logging.info(f"LLM text: {llmText}")
LLMdata = Data_Extractor(llmText)
logging.info(f"LLM data: {LLMdata}")
except Exception as e:
logging.error(f"Error during LLM processing: {e}")
logging.info("Running backup model...")
# Run the backup model in case of an exception
text = json_to_llm_str(extracted_text)
LLMdata = NER_Model(text)
logging.info(f"NER model data: {LLMdata}")
cont_data = process_extracted_text(extracted_text)
logging.info(f"Contextual data: {cont_data}")
# Storing the parsed results
processed_data = process_resume_data(LLMdata, cont_data, extracted_text)
logging.info(f"Processed data: {processed_data}")
session['processed_data'] = processed_data
session['processed_Img'] = processed_Img
flash('Data processed and analyzed successfully')
logging.info("Data processed and analyzed successfully")
return redirect(url_for('result'))
@app.route('/result')
def result():
processed_data = session.get('processed_data', {})
processed_Img = session.get('processed_Img', {})
logging.info(f"Displaying results: Data - {processed_data}, Images - {processed_Img}")
return render_template('result.html', data=processed_data, Img=processed_Img)
@app.route('/uploads/<filename>')
def uploaded_file(filename):
logging.info(f"Serving file: {filename}")
return send_from_directory(app.config['UPLOAD_FOLDER'], filename)
if __name__ == '__main__':
logging.info("Starting Flask app")
app.run(debug=True)
|