File size: 8,679 Bytes
05d66e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import streamlit as st
import pandas as pd
import numpy as np
from streamlit.components.v1 import html
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler
import pickle
import io
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import base64
from functions import *
st.set_page_config(layout="wide",page_title="Carbon Footprint Calculator", page_icon="./media/favicon.ico")
def get_base64(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
background = get_base64("./media/background_min.jpg")
icon2 = get_base64("./media/icon2.png")
icon3 = get_base64("./media/icon3.png")
with open("./style/style.css", "r") as style:
css=f"""<style>{style.read().format(background=background, icon2=icon2, icon3=icon3)}</style>"""
st.markdown(css, unsafe_allow_html=True)
def script():
with open("./style/scripts.js", "r", encoding="utf-8") as scripts:
open_script = f"""<script>{scripts.read()}</script> """
html(open_script, width=0, height=0)
left, middle, right = st.columns([2,3.5,2])
main, comps , result = middle.tabs([" ", " ", " "])
with open("./style/main.md", "r", encoding="utf-8") as main_page:
main.markdown(f"""{main_page.read()}""")
_,but,_ = main.columns([1,2,1])
if but.button("Calculate Your Carbon Footprint!", type="primary"):
click_element('tab-1')
tab1, tab2, tab3, tab4, tab5 = comps.tabs(["π΄ Personal","π Travel","ποΈ Waste","β‘ Energy","πΈ Consumption"])
tab_result,_ = result.tabs([" "," "])
def component():
tab1col1, tab1col2 = tab1.columns(2)
height = tab1col1.number_input("Height",0,251, value=None, placeholder="160", help="in cm")
weight = tab1col2.number_input("Weight", 0, 250, value=None, placeholder="75", help="in kg")
if (weight is None) or (weight == 0) : weight = 1
if (height is None) or (height == 0) : height = 1
calculation = weight / (height/100)**2
body_type = "underweight" if (calculation < 18.5) else \
"normal" if ((calculation >=18.5) and (calculation < 25 )) else \
"overweight" if ((calculation >= 25) and (calculation < 30)) else "obese"
sex = tab1.selectbox('Gender', ["female", "male"])
diet = tab1.selectbox('Diet', ['omnivore', 'pescatarian', 'vegetarian', 'vegan'], help="""
Omnivore: Eats both plants and animals.\n
Pescatarian: Consumes plants and seafood, but no other meat\n
Vegetarian: Diet excludes meat but includes plant-based foods.\n
Vegan: Avoids all animal products, including meat, dairy, and eggs.""")
social = tab1.selectbox('Social Activity', ['never', 'often', 'sometimes'], help="How often do you go out?")
transport = tab2.selectbox('Transportation', ['public', 'private', 'walk/bicycle'],
help="Which transportation method do you prefer the most?")
if transport == "private":
vehicle_type = tab2.selectbox('Vehicle Type', ['petrol', 'diesel', 'hybrid', 'lpg', 'electric'],
help="What type of fuel do you use in your car?")
else:
vehicle_type = "None"
if transport == "walk/bicycle":
vehicle_km = 0
else:
vehicle_km = tab2.slider('What is the monthly distance traveled by the vehicle in kilometers?', 0, 5000, 0, disabled=False)
air_travel = tab2.selectbox('How often did you fly last month?', ['never', 'rarely', 'frequently', 'very frequently'], help= """
Never: I didn't travel by plane.\n
Rarely: Around 1-4 Hours.\n
Frequently: Around 5 - 10 Hours.\n
Very Frequently: Around 10+ Hours. """)
waste_bag = tab3.selectbox('What is the size of your waste bag?', ['small', 'medium', 'large', 'extra large'])
waste_count = tab3.slider('How many waste bags do you trash out in a week?', 0, 10, 0)
recycle = tab3.multiselect('Do you recycle any materials below?', ['Plastic', 'Paper', 'Metal', 'Glass'])
heating_energy = tab4.selectbox('What power source do you use for heating?', ['natural gas', 'electricity', 'wood', 'coal'])
for_cooking = tab4.multiselect('What cooking systems do you use?', ['microwave', 'oven', 'grill', 'airfryer', 'stove'])
energy_efficiency = tab4.selectbox('Do you consider the energy efficiency of electronic devices?', ['No', 'Yes', 'Sometimes' ])
daily_tv_pc = tab4.slider('How many hours a day do you spend in front of your PC/TV?', 0, 24, 0)
internet_daily = tab4.slider('What is your daily internet usage in hours?', 0, 24, 0)
shower = tab5.selectbox('How often do you take a shower?', ['daily', 'twice a day', 'more frequently', 'less frequently'])
grocery_bill = tab5.slider('Monthly grocery spending in $', 0, 500, 0)
clothes_monthly = tab5.slider('How many clothes do you buy monthly?', 0, 30, 0)
data = {'Body Type': body_type,
"Sex": sex,
'Diet': diet,
"How Often Shower": shower,
"Heating Energy Source": heating_energy,
"Transport": transport,
"Social Activity": social,
'Monthly Grocery Bill': grocery_bill,
"Frequency of Traveling by Air": air_travel,
"Vehicle Monthly Distance Km": vehicle_km,
"Waste Bag Size": waste_bag,
"Waste Bag Weekly Count": waste_count,
"How Long TV PC Daily Hour": daily_tv_pc,
"Vehicle Type": vehicle_type,
"How Many New Clothes Monthly": clothes_monthly,
"How Long Internet Daily Hour": internet_daily,
"Energy efficiency": energy_efficiency
}
data.update({f"Cooking_with_{x}": y for x, y in
dict(zip(for_cooking, np.ones(len(for_cooking)))).items()})
data.update({f"Do You Recyle_{x}": y for x, y in
dict(zip(recycle, np.ones(len(recycle)))).items()})
return pd.DataFrame(data, index=[0])
df = component()
data = input_preprocessing(df)
sample_df = pd.DataFrame(data=sample,index=[0])
sample_df[sample_df.columns] = 0
sample_df[data.columns] = data
ss = pickle.load(open("./models/scale.sav","rb"))
model = pickle.load(open("./models/model.sav","rb"))
prediction = round(np.exp(model.predict(ss.transform(sample_df))[0]))
column1,column2 = tab1.columns(2)
_,resultbutton,_ = tab5.columns([1,1,1])
if resultbutton.button(" ", type = "secondary"):
tab_result.image(chart(model,ss, sample_df,prediction), use_column_width="auto")
click_element('tab-2')
pop_button = """<button id = "button-17" class="button-17" role="button"> β Did You Know</button>"""
_,home,_ = comps.columns([1,2,1])
_,col2,_ = comps.columns([1,10,1])
col2.markdown(pop_button, unsafe_allow_html=True)
pop = """
<div id="popup" class="DidYouKnow_root">
<p class="DidYouKnow_title TextNew" style="font-size: 20px;"> β Did you know</p>
<p id="popupText" class="DidYouKnow_content TextNew"><span>
Each year, human activities release over 40 billion metric tons of carbon dioxide into the atmosphere, contributing to climate change.
</span></p>
</div>
"""
col2.markdown(pop, unsafe_allow_html=True)
if home.button("π‘"):
click_element('tab-0')
_,resultmid,_ = result.columns([1,2,1])
tree_count = round(prediction / 411.4)
tab_result.markdown(f"""You owe nature <b>{tree_count}</b> tree{'s' if tree_count > 1 else ''} monthly. <br> {f"<a href='https://www.tema.org.tr/en/homepage' id = 'button-17' class='button-17' role='button'> π³ Proceed to offset π³</a>" if tree_count > 0 else ""}""", unsafe_allow_html=True)
if resultmid.button(" ", type="secondary"):
click_element('tab-1')
with open("./style/footer.html", "r", encoding="utf-8") as footer:
footer_html = f"""{footer.read()}"""
st.markdown(footer_html, unsafe_allow_html=True)
script()
|