File size: 5,323 Bytes
24a2022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f35f2a
24a2022
 
e335f73
24a2022
 
 
 
71aab31
 
 
 
24a2022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e335f73
24a2022
e335f73
24a2022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e335f73
24a2022
e335f73
24a2022
 
e335f73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24a2022
 
 
 
 
 
 
 
 
 
 
 
 
81b18cb
e335f73
81b18cb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
from flask import Flask, request, redirect, jsonify
import numpy as np
from flask import render_template
from asgiref.wsgi import WsgiToAsgi
import numpy as np
import cv2
from sklearn.preprocessing import LabelEncoder
import imutils
from imutils.contours import sort_contours
from keras.models import load_model
import warnings
from flask_cors import CORS

# Suppress specific TensorFlow and Keras warnings
warnings.filterwarnings("ignore", category=DeprecationWarning, module="tensorflow")
warnings.filterwarnings("ignore", category=DeprecationWarning, module="keras")

# Get the path to the directory containing this script
script_dir = os.path.dirname(os.path.abspath(__file__))

# Load the model using the relative path
model_path = os.path.join(script_dir, "./ocr_perfecto_experiment.h5")
model = load_model(model_path)


def test_pipeline(image_data):

    img = cv2.imdecode(image_data, cv2.IMREAD_COLOR)
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    height, width = img_gray.shape
    half_width = round(width / 2)
    half_height = round(height / 2)
    img_gray = cv2.resize(img_gray, (half_width, half_height))
    img_gray = cv2.GaussianBlur(img_gray, (5, 5), 0)
    edged = cv2.Canny(img_gray, 30, 150)
    dilated = cv2.dilate(edged.copy(), None, iterations=6)
    normalized_image = cv2.normalize(dilated, None, 0, 255, cv2.NORM_MINMAX)

    contours = cv2.findContours(
        normalized_image.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
    )
    contours = imutils.grab_contours(contours)
    contours = sort_contours(contours, method="left-to-right")[0]
    labels = [
        "0",
        "1",
        "2",
        "3",
        "4",
        "5",
        "6",
        "7",
        "8",
        "9",
        "_",
        "-",
        "[",
        "]",
        "+",
        "%",
    ]

    real_labels = [
        "0",
        "1",
        "2",
        "3",
        "4",
        "5",
        "6",
        "7",
        "8",
        "9",
        "*",
        "-",
        "(",
        ")",
        "+",
        "/",
    ]

    label_encoder = LabelEncoder()
    label_class = label_encoder.fit_transform(labels)

    results = []

    for c in contours:
        if cv2.contourArea(c) < 1000:
            continue
        (x, y, w, h) = cv2.boundingRect(c)
        if 20 <= w:
            roi = img_gray[y : y + h, x : x + w]
            thresh = cv2.threshold(
                roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU
            )[1]
            (th, tw) = thresh.shape
            if tw > th:
                thresh = imutils.resize(thresh, width=28)
            if th > tw:
                thresh = imutils.resize(thresh, height=28)
            (th, tw) = thresh.shape
            dx = int(max(0, 28 - tw) / 2.0)
            dy = int(max(0, 28 - th) / 2.0)
            padded = cv2.copyMakeBorder(
                thresh,
                top=dy,
                bottom=dy,
                left=dx,
                right=dx,
                borderType=cv2.BORDER_CONSTANT,
                value=(0, 0, 0),
            )
            padded = cv2.resize(padded, (28, 28))
            padded = np.array(padded)
            padded = padded / 255.0
            padded = np.expand_dims(padded, axis=0)
            padded = np.expand_dims(padded, axis=-1)
            pred = model.predict(padded)
            pred = np.argmax(pred, axis=1)
            results.append(real_labels[np.where(label_class == pred[0])[0][0]])

    return results


ALLOWED_EXTENSIONS = {"png", "jpg", "jpeg"}
app = Flask(__name__, template_folder="./src/templates", static_folder="./src/public")
app.secret_key = "1234"
cors = CORS(app, resources={r"/*": {"origins": "*"}})


def allowed_file(filename):
    return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS


@app.route("/")
def index():
    return render_template("index.html")


@app.route("/api/photo-upload", methods=["POST"])
def upload_file():
    try:
        if "file" not in request.files:
            raise ValueError("File not found in the request.")

        file = request.files["file"]

        if file.filename == "":
            raise ValueError("Empty filename in the request.")

        if file and allowed_file(file.filename):
            image = file.read()
            image_data = np.frombuffer(image, np.uint8)
            results = test_pipeline(image_data)
            return jsonify(results), 200
        else:
            raise ValueError("Invalid file type.")

    except Exception as e:
        return f"Error processing file: {str(e)}", 500


@app.route("/predict", methods=["POST"])
def predict():
    try:
        if "file" not in request.files:
            raise ValueError("File not found in the request.")

        file = request.files["file"]

        if file.filename == "":
            raise ValueError("Empty filename in the request.")

        if file and allowed_file(file.filename):
            image = file.read()
            image_data = np.frombuffer(image, np.uint8)
            results = test_pipeline(image_data)
            return jsonify(results), 200
        else:
            raise ValueError("Invalid file type.")

    except Exception as e:
        return f"Error processing file: {str(e)}", 500


wsgi = WsgiToAsgi(app)


def create_app():
    return app