Spaces:
Runtime error
Runtime error
File size: 1,563 Bytes
35af834 80bbae5 21bac16 35af834 80bbae5 35af834 21bac16 35af834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from keras.models import load_model
import numpy as np
from PIL import Image
import cv2
import os
import gradio as gr
weight_path = r'basic.h5' #权重文件
model = load_model(weight_path)
labels=['天气:小雨, 降雨强度(mm/min):0.8, 能见度(m):500, 道路摩擦系数:0.64, 限速(km/h):80',
'天气:中雨, 降雨强度(mm/min):1.2, 能见度(m):250, 道路摩擦系数:0.58, 限速(km/h):50',
'天气:大雨, 降雨强度(mm/min):1.6, 能见度(m):50-150, 道路摩擦系数:0.45, 限速(km/h):30',
'天气:薄雾, 降雨强度(mm/min):0, 能见度(m):500:, 道路摩擦系数:0.8, 限速(km/h):110',
'天气:大雾, 降雨强度(mm/min):0, 能见度(m):200, 道路摩擦系数:0.8, 限速(km/h):70',
'天气:浓雾, 降雨强度(mm/min):0:, 能见度(m):50-100, 道路摩擦系数:0.8, 限速(km/h):40',
'天气:晴, 降雨强度(mm/min):0, 能见度(m):>1000:, 道路摩擦系数:0.8, 限速(km/h):120']
def classify_image(inp):
inp = inp.resize((256,256), Image.ANTIALIAS) #缩放到事先指定的大小
inp = np.expand_dims(inp, axis=0)
prediction = model.predict(inp)
confidences = {labels[i]: float(prediction[0][i]) for i in range(7)}
return confidences
gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil",shape=(256,256)),
outputs=gr.Label(num_top_classes=1),
examples=["sunny.jpg"],
interpretation="default",cache_examples=True,title="恶劣天气图像识别与预警"
).launch(enable_queue=True) |