File size: 6,339 Bytes
69a077e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from bs4 import BeautifulSoup
from typing import Dict, List
import hashlib

class DOMAnalyzer:
    def __init__(self):
        pass
    
    def analyze_structure(self, html: str) -> Dict:
        """Analyze DOM structure and create tree representation"""
        soup = BeautifulSoup(html, 'lxml')
        
        return {
            "tree": self._build_dom_tree(soup.body if soup.body else soup),
            "statistics": self._get_dom_statistics(soup),
            "semantic_structure": self._analyze_semantic_structure(soup),
            "content_blocks": self._identify_content_blocks(soup)
        }
    
    def _build_dom_tree(self, element, depth=0, max_depth=5) -> Dict:
        """Build hierarchical DOM tree structure"""
        if depth > max_depth or not element or not hasattr(element, 'name'):
            return {}
        
        node = {
            "tag": element.name if element.name else "text",
            "id": element.get('id', ''),
            "classes": element.get('class', []),
            "text_content": element.get_text()[:100] if element.get_text() else "",
            "children": [],
            "attributes": dict(element.attrs) if hasattr(element, 'attrs') else {},
            "depth": depth,
            "node_id": hashlib.md5(str(element)[:500].encode()).hexdigest()[:8]
        }
        
        # Add children (limit to prevent huge trees)
        if hasattr(element, 'children') and depth < max_depth:
            child_count = 0
            for child in element.children:
                if child_count >= 10:  # Limit children per node
                    break
                if hasattr(child, 'name') and child.name:
                    child_node = self._build_dom_tree(child, depth + 1, max_depth)
                    if child_node:
                        node["children"].append(child_node)
                        child_count += 1
        
        return node
    
    def _get_dom_statistics(self, soup: BeautifulSoup) -> Dict:
        """Get DOM statistics for analysis"""
        all_tags = soup.find_all()
        tag_counts = {}
        
        for tag in all_tags:
            tag_name = tag.name
            tag_counts[tag_name] = tag_counts.get(tag_name, 0) + 1
        
        return {
            "total_elements": len(all_tags),
            "tag_distribution": tag_counts,
            "max_depth": self._calculate_max_depth(soup),
            "text_content_ratio": self._calculate_text_ratio(soup)
        }
    
    def _analyze_semantic_structure(self, soup: BeautifulSoup) -> Dict:
        """Analyze semantic HTML structure"""
        semantic_tags = ['header', 'nav', 'main', 'article', 'section', 'aside', 'footer']
        semantic_elements = {}
        
        for tag in semantic_tags:
            elements = soup.find_all(tag)
            semantic_elements[tag] = len(elements)
        
        return {
            "semantic_elements": semantic_elements,
            "has_semantic_structure": sum(semantic_elements.values()) > 0,
            "content_hierarchy": self._analyze_heading_hierarchy(soup)
        }
    
    def _identify_content_blocks(self, soup: BeautifulSoup) -> List[Dict]:
        """Identify main content blocks for LLM processing"""
        content_blocks = []
        
        # Look for common content containers
        selectors = ['article', 'main', '.content', '#content', '.post', '.entry']
        
        for selector in selectors:
            elements = soup.select(selector)
            for elem in elements:
                if elem.get_text(strip=True):
                    content_blocks.append({
                        "selector": selector,
                        "tag": elem.name,
                        "text_length": len(elem.get_text()),
                        "element_id": elem.get('id', ''),
                        "classes": elem.get('class', []),
                        "priority": self._calculate_content_priority(elem)
                    })
        
        return sorted(content_blocks, key=lambda x: x['priority'], reverse=True)[:5]
    
    def _calculate_max_depth(self, soup: BeautifulSoup) -> int:
        """Calculate maximum DOM depth"""
        def get_depth(element, current_depth=0):
            if not hasattr(element, 'children'):
                return current_depth
            
            max_child_depth = current_depth
            for child in element.children:
                if hasattr(child, 'name') and child.name:
                    depth = get_depth(child, current_depth + 1)
                    max_child_depth = max(max_child_depth, depth)
            
            return max_child_depth
        
        return get_depth(soup)
    
    def _calculate_text_ratio(self, soup: BeautifulSoup) -> float:
        """Calculate ratio of text content to HTML tags"""
        text_length = len(soup.get_text())
        html_length = len(str(soup))
        return text_length / html_length if html_length > 0 else 0
    
    def _analyze_heading_hierarchy(self, soup: BeautifulSoup) -> List[Dict]:
        """Analyze heading structure for content organization"""
        headings = []
        for i in range(1, 7):
            for heading in soup.find_all(f'h{i}'):
                headings.append({
                    "level": i,
                    "text": heading.get_text().strip(),
                    "position": len(headings)
                })
        return headings
    
    def _calculate_content_priority(self, element) -> int:
        """Calculate priority score for content blocks"""
        score = 0
        text_length = len(element.get_text())
        
        # Text length scoring
        score += min(text_length // 100, 10)
        
        # Semantic tag bonus
        if element.name in ['article', 'main']:
            score += 5
        elif element.name in ['section', 'div']:
            score += 2
        
        # Class/ID based scoring
        classes = element.get('class', [])
        element_id = element.get('id', '')
        
        content_indicators = ['content', 'article', 'post', 'main', 'body']
        for indicator in content_indicators:
            if any(indicator in str(c).lower() for c in classes):
                score += 3
            if indicator in element_id.lower():
                score += 3
        
        return score