File size: 4,627 Bytes
69a077e
 
 
 
5c969a3
69a077e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from bs4 import BeautifulSoup, Comment
from typing import Dict, List, Optional
import re
from urllib.parse import urljoin, urlparse
from settings import settings

class DataExtractor:
    def __init__(self):
        self.config = settings.extraction
    
    def extract_structured_data(self, html: str, url: str) -> Dict:
        """Extract structured data from HTML for LLM consumption"""
        soup = BeautifulSoup(html, 'lxml')
        
        # Remove unwanted elements
        self._clean_html(soup)
        
        return {
            "content": self._extract_content(soup),
            "metadata": self._extract_metadata(soup, url),
            "structure": self._extract_structure(soup),
            "links": self._extract_links(soup, url),
            "images": self._extract_images(soup, url),
            "text_summary": self._extract_text_summary(soup)
        }
    
    def _clean_html(self, soup: BeautifulSoup):
        """Remove unwanted elements for cleaner extraction"""
        for selector in self.config.ignore_selectors:
            for element in soup.select(selector):
                element.decompose()
        
        # Remove comments and scripts
        for element in soup(text=lambda text: isinstance(text, Comment)):
            element.extract()
    
    def _extract_content(self, soup: BeautifulSoup) -> List[Dict]:
        """Extract main content blocks"""
        content_blocks = []
        
        for selector in self.config.content_selectors:
            elements = soup.select(selector)
            for elem in elements:
                text = elem.get_text(strip=True)
                if len(text) >= self.config.min_text_length:
                    content_blocks.append({
                        "tag": elem.name,
                        "text": text,
                        "html": str(elem),
                        "attributes": dict(elem.attrs) if elem.attrs else {}
                    })
        
        return content_blocks
    
    def _extract_metadata(self, soup: BeautifulSoup, url: str) -> Dict:
        """Extract page metadata"""
        title = soup.find('title')
        meta_desc = soup.find('meta', attrs={'name': 'description'})
        
        return {
            "title": title.get_text().strip() if title else "",
            "description": meta_desc.get('content', '') if meta_desc else "",
            "url": url,
            "domain": urlparse(url).netloc,
            "headings": self._extract_headings(soup)
        }
    
    def _extract_headings(self, soup: BeautifulSoup) -> List[Dict]:
        """Extract heading hierarchy for structure"""
        headings = []
        for i in range(1, 7):
            for heading in soup.find_all(f'h{i}'):
                headings.append({
                    "level": i,
                    "text": heading.get_text().strip(),
                    "id": heading.get('id', '')
                })
        return headings
    
    def _extract_structure(self, soup: BeautifulSoup) -> Dict:
        """Extract DOM structure for relationships"""
        return {
            "sections": len(soup.find_all(['section', 'article', 'div'])),
            "paragraphs": len(soup.find_all('p')),
            "lists": len(soup.find_all(['ul', 'ol'])),
            "tables": len(soup.find_all('table')),
            "forms": len(soup.find_all('form'))
        }
    
    def _extract_links(self, soup: BeautifulSoup, base_url: str) -> List[Dict]:
        """Extract all links for relationship mapping"""
        links = []
        for link in soup.find_all('a', href=True):
            href = urljoin(base_url, link['href'])
            links.append({
                "url": href,
                "text": link.get_text().strip(),
                "internal": urlparse(href).netloc == urlparse(base_url).netloc
            })
        return links[:50]  # Limit for performance
    
    def _extract_images(self, soup: BeautifulSoup, base_url: str) -> List[Dict]:
        """Extract images with context"""
        images = []
        for img in soup.find_all('img', src=True):
            images.append({
                "src": urljoin(base_url, img['src']),
                "alt": img.get('alt', ''),
                "caption": img.get('title', '')
            })
        return images[:20]  # Limit for performance
    
    def _extract_text_summary(self, soup: BeautifulSoup) -> str:
        """Extract clean text for LLM processing"""
        text = soup.get_text()
        # Clean whitespace and normalize
        text = re.sub(r'\s+', ' ', text).strip()
        return text[:5000]  # Limit for token efficiency