Spaces:
Configuration error
Configuration error
File size: 10,819 Bytes
5641073 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
"use strict";
/**
* @author jdiaz5513
*/
Object.defineProperty(exports, "__esModule", { value: true });
exports.unpack = exports.pack = exports.getZeroByteCount = exports.getUnpackedByteLength = exports.getTagByte = exports.getHammingWeight = void 0;
const constants_1 = require("../constants");
const errors_1 = require("../errors");
/**
* Compute the Hamming weight (number of bits set to 1) of a number. Used to figure out how many bytes follow a tag byte
* while computing the size of a packed message.
*
* WARNING: Using this with floating point numbers will void your warranty.
*
* @param {number} x A real integer.
* @returns {number} The hamming weight (integer).
*/
function getHammingWeight(x) {
// Thanks, HACKMEM!
let w = x - ((x >> 1) & 0x55555555);
w = (w & 0x33333333) + ((w >> 2) & 0x33333333);
return (((w + (w >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24;
}
exports.getHammingWeight = getHammingWeight;
/**
* Compute the tag byte from the 8 bytes of a 64-bit word.
*
* @param {byte} a The first byte.
* @param {byte} b The second byte.
* @param {byte} c The third byte.
* @param {byte} d The fourth byte.
* @param {byte} e The fifth byte.
* @param {byte} f The sixth byte.
* @param {byte} g The seventh byte.
* @param {byte} h The eighth byte (phew!).
* @returns {number} The tag byte.
*/
function getTagByte(a, b, c, d, e, f, g, h) {
// Yes, it's pretty. Don't touch it.
return ((a === 0 ? 0 : 0b00000001) |
(b === 0 ? 0 : 0b00000010) |
(c === 0 ? 0 : 0b00000100) |
(d === 0 ? 0 : 0b00001000) |
(e === 0 ? 0 : 0b00010000) |
(f === 0 ? 0 : 0b00100000) |
(g === 0 ? 0 : 0b01000000) |
(h === 0 ? 0 : 0b10000000));
}
exports.getTagByte = getTagByte;
/**
* Efficiently calculate the length of a packed Cap'n Proto message.
*
* @export
* @param {ArrayBuffer} packed The packed message.
* @returns {number} The length of the unpacked message in bytes.
*/
function getUnpackedByteLength(packed) {
const p = new Uint8Array(packed);
let wordLength = 0;
let lastTag = 0x77;
for (let i = 0; i < p.byteLength;) {
const tag = p[i];
if (lastTag === 0 /* ZERO */) {
wordLength += tag;
i++;
lastTag = 0x77;
}
else if (lastTag === 255 /* SPAN */) {
wordLength += tag;
i += tag * 8 + 1;
lastTag = 0x77;
}
else {
wordLength++;
i += getHammingWeight(tag) + 1;
lastTag = tag;
}
}
return wordLength * 8;
}
exports.getUnpackedByteLength = getUnpackedByteLength;
/**
* Compute the number of zero bytes that occur in a given 64-bit word, provided as eight separate bytes.
*
* @param {byte} a The first byte.
* @param {byte} b The second byte.
* @param {byte} c The third byte.
* @param {byte} d The fourth byte.
* @param {byte} e The fifth byte.
* @param {byte} f The sixth byte.
* @param {byte} g The seventh byte.
* @param {byte} h The eighth byte (phew!).
* @returns {number} The number of these bytes that are zero.
*/
function getZeroByteCount(a, b, c, d, e, f, g, h) {
return ((a === 0 ? 1 : 0) +
(b === 0 ? 1 : 0) +
(c === 0 ? 1 : 0) +
(d === 0 ? 1 : 0) +
(e === 0 ? 1 : 0) +
(f === 0 ? 1 : 0) +
(g === 0 ? 1 : 0) +
(h === 0 ? 1 : 0));
}
exports.getZeroByteCount = getZeroByteCount;
/**
* Pack a section of a Cap'n Proto message into a compressed format. This will efficiently compress zero bytes (which
* are common in idiomatic Cap'n Proto messages) into a compact form.
*
* For stream-framed messages this is called once for the frame header and once again for each segment in the message.
*
* The returned array buffer is trimmed to the exact size of the packed message with a single copy operation at the end.
* This should be decent on CPU time but does require quite a lot of memory (a normal array is filled up with each
* packed byte until the packing is complete).
*
* @export
* @param {ArrayBuffer} unpacked The message to pack.
* @param {number} [byteOffset] Starting byte offset to read bytes from, defaults to 0.
* @param {number} [byteLength] Total number of bytes to read, defaults to the remainder of the buffer contents.
* @returns {ArrayBuffer} A packed version of the message.
*/
function pack(unpacked, byteOffset = 0, byteLength) {
if (unpacked.byteLength % 8 !== 0)
throw new Error(errors_1.MSG_PACK_NOT_WORD_ALIGNED);
const src = new Uint8Array(unpacked, byteOffset, byteLength);
// TODO: Maybe we should do this with buffers? This costs more than 8x the final compressed size in temporary RAM.
const dst = [];
/* Just have to be sure it's neither ZERO nor SPAN. */
let lastTag = 0x77;
/** This is where we need to remember to write the SPAN tag (0xff). */
let spanTagOffset = NaN;
/** How many words have been copied during the current span. */
let spanWordLength = 0;
/**
* When this hits zero, we've had PACK_SPAN_THRESHOLD zero bytes pass by and it's time to bail from the span.
*/
let spanThreshold = constants_1.PACK_SPAN_THRESHOLD;
for (let srcByteOffset = 0; srcByteOffset < src.byteLength; srcByteOffset += 8) {
/** Read in the entire word. Yes, this feels silly but it's fast! */
const a = src[srcByteOffset];
const b = src[srcByteOffset + 1];
const c = src[srcByteOffset + 2];
const d = src[srcByteOffset + 3];
const e = src[srcByteOffset + 4];
const f = src[srcByteOffset + 5];
const g = src[srcByteOffset + 6];
const h = src[srcByteOffset + 7];
const tag = getTagByte(a, b, c, d, e, f, g, h);
/** If this is true we'll skip the normal word write logic after the switch statement. */
let skipWriteWord = true;
switch (lastTag) {
case 0 /* ZERO */:
// We're writing a span of words with all zeroes in them. See if we need to bail out of the fast path.
if (tag !== 0 /* ZERO */ || spanWordLength >= 0xff) {
// There's a bit in there or we got too many zeroes. Damn, we need to bail.
dst.push(spanWordLength);
spanWordLength = 0;
skipWriteWord = false;
}
else {
// Kay, let's quickly inc this and go.
spanWordLength++;
}
break;
case 255 /* SPAN */: {
// We're writing a span of nonzero words.
const zeroCount = getZeroByteCount(a, b, c, d, e, f, g, h);
// See if we need to bail now.
spanThreshold -= zeroCount;
if (spanThreshold <= 0 || spanWordLength >= 0xff) {
// Alright, time to get packing again. Write the number of words we skipped to the beginning of the span.
dst[spanTagOffset] = spanWordLength;
spanWordLength = 0;
spanThreshold = constants_1.PACK_SPAN_THRESHOLD;
// We have to write this word normally.
skipWriteWord = false;
}
else {
// Just write this word verbatim.
dst.push(a, b, c, d, e, f, g, h);
spanWordLength++;
}
break;
}
default:
// Didn't get a special tag last time, let's write this as normal.
skipWriteWord = false;
break;
}
// A goto is fast, idk why people keep hatin'.
if (skipWriteWord)
continue;
dst.push(tag);
lastTag = tag;
if (a !== 0)
dst.push(a);
if (b !== 0)
dst.push(b);
if (c !== 0)
dst.push(c);
if (d !== 0)
dst.push(d);
if (e !== 0)
dst.push(e);
if (f !== 0)
dst.push(f);
if (g !== 0)
dst.push(g);
if (h !== 0)
dst.push(h);
// Record the span tag offset if needed, making sure to actually leave room for it.
if (tag === 255 /* SPAN */) {
spanTagOffset = dst.length;
dst.push(0);
}
}
// We're done. If we were writing a span let's finish it.
if (lastTag === 0 /* ZERO */) {
dst.push(spanWordLength);
}
else if (lastTag === 255 /* SPAN */) {
dst[spanTagOffset] = spanWordLength;
}
return new Uint8Array(dst).buffer;
}
exports.pack = pack;
/**
* Unpack a compressed Cap'n Proto message into a new ArrayBuffer.
*
* Unlike the `pack` function, this is able to efficiently determine the exact size needed for the output buffer and
* runs considerably more efficiently.
*
* @export
* @param {ArrayBuffer} packed An array buffer containing the packed message.
* @returns {ArrayBuffer} The unpacked message.
*/
function unpack(packed) {
// We have no choice but to read the packed buffer one byte at a time.
const src = new Uint8Array(packed);
const dst = new Uint8Array(new ArrayBuffer(getUnpackedByteLength(packed)));
/** The last tag byte that we've seen - it starts at a "neutral" value. */
let lastTag = 0x77;
for (let srcByteOffset = 0, dstByteOffset = 0; srcByteOffset < src.byteLength;) {
const tag = src[srcByteOffset];
if (lastTag === 0 /* ZERO */) {
// We have a span of zeroes. New array buffers are guaranteed to be initialized to zero so we just seek ahead.
dstByteOffset += tag * 8;
srcByteOffset++;
lastTag = 0x77;
}
else if (lastTag === 255 /* SPAN */) {
// We have a span of unpacked bytes. Copy them verbatim from the source buffer.
const spanByteLength = tag * 8;
dst.set(src.subarray(srcByteOffset + 1, srcByteOffset + 1 + spanByteLength), dstByteOffset);
dstByteOffset += spanByteLength;
srcByteOffset += 1 + spanByteLength;
lastTag = 0x77;
}
else {
// Okay, a normal tag. Let's read past the tag and copy bytes that have a bit set in the tag.
srcByteOffset++;
for (let i = 1; i <= 0b10000000; i <<= 1) {
// We only need to actually touch `dst` if there's a nonzero byte (it's already initialized to zeroes).
if ((tag & i) !== 0)
dst[dstByteOffset] = src[srcByteOffset++];
dstByteOffset++;
}
lastTag = tag;
}
}
return dst.buffer;
}
exports.unpack = unpack;
//# sourceMappingURL=packing.js.map |