File size: 19,697 Bytes
0eeee8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import copy
import time
from collections import deque

import tiktoken
import torch
import torch.nn.functional as F
from extensions.openai.errors import InvalidRequestError
from extensions.openai.utils import debug_msg
from modules import shared
from modules.chat import (
    generate_chat_prompt,
    generate_chat_reply,
    load_character_memoized
)
from modules.presets import load_preset_memoized
from modules.text_generation import decode, encode, generate_reply
from transformers import LogitsProcessor, LogitsProcessorList


class LogitsBiasProcessor(LogitsProcessor):
    def __init__(self, logit_bias={}):
        self.logit_bias = logit_bias
        if self.logit_bias:
            self.keys = list([int(key) for key in self.logit_bias.keys()])
            values = [self.logit_bias[str(key)] for key in self.keys]
            self.values = torch.tensor(values, dtype=torch.float, device=shared.model.device)
            debug_msg(f"{self})")

    def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
        if self.logit_bias:
            debug_msg(logits[0, self.keys], " + ", self.values)
            logits[0, self.keys] += self.values
            debug_msg(" --> ", logits[0, self.keys])
            debug_msg(" max/min ", float(torch.max(logits[0])), float(torch.min(logits[0])))

        return logits

    def __repr__(self):
        return f"<{self.__class__.__name__}(logit_bias={self.logit_bias})>"


class LogprobProcessor(LogitsProcessor):
    def __init__(self, logprobs=None):
        self.logprobs = logprobs
        self.token_alternatives = {}

    def __call__(self, input_ids: torch.LongTensor, logits: torch.FloatTensor) -> torch.FloatTensor:
        if self.logprobs is not None:  # 0-5
            log_e_probabilities = F.log_softmax(logits, dim=1)
            top_values, top_indices = torch.topk(log_e_probabilities, k=self.logprobs + 1)
            top_tokens = [decode(tok) for tok in top_indices[0]]
            top_probs = [float(x) for x in top_values[0]]
            self.token_alternatives = dict(zip(top_tokens, top_probs))
            debug_msg(repr(self))

        return logits

    def __repr__(self):
        return f"<{self.__class__.__name__}(logprobs={self.logprobs}, token_alternatives={self.token_alternatives})>"


def convert_logprobs_to_tiktoken(model, logprobs):
    # more problems than it's worth.
    # try:
    #     encoder = tiktoken.encoding_for_model(model)
    #     # just pick the first one if it encodes to multiple tokens... 99.9% not required and maybe worse overall.
    #     return dict([(encoder.decode([encoder.encode(token)[0]]), prob) for token, prob in logprobs.items()])
    # except KeyError:
    #     # assume native tokens if we can't find the tokenizer
    #     return logprobs

    return logprobs


def process_parameters(body, is_legacy=False):
    generate_params = body
    max_tokens_str = 'length' if is_legacy else 'max_tokens'
    generate_params['max_new_tokens'] = body.pop(max_tokens_str)
    if generate_params['truncation_length'] == 0:
        if shared.args.loader and shared.args.loader.lower().startswith('exllama'):
            generate_params['truncation_length'] = shared.args.max_seq_len
        elif shared.args.loader and shared.args.loader in ['llama.cpp', 'llamacpp_HF', 'ctransformers']:
            generate_params['truncation_length'] = shared.args.n_ctx
        else:
            generate_params['truncation_length'] = shared.settings['truncation_length']

    if body['preset'] is not None:
        preset = load_preset_memoized(body['preset'])
        generate_params.update(preset)

    generate_params['custom_stopping_strings'] = []
    if 'stop' in body:  # str or array, max len 4 (ignored)
        if isinstance(body['stop'], str):
            generate_params['custom_stopping_strings'] = [body['stop']]
        elif isinstance(body['stop'], list):
            generate_params['custom_stopping_strings'] = body['stop']

    logits_processor = []
    logit_bias = body.get('logit_bias', None)
    if logit_bias:  # {str: float, ...}
        # XXX convert tokens from tiktoken based on requested model
        # Ex.: 'logit_bias': {'1129': 100, '11442': 100, '16243': 100}
        try:
            encoder = tiktoken.encoding_for_model(generate_params['model'])
            new_logit_bias = {}
            for logit, bias in logit_bias.items():
                for x in encode(encoder.decode([int(logit)]), add_special_tokens=False)[0]:
                    if int(x) in [0, 1, 2, 29871]:  # XXX LLAMA tokens
                        continue

                    new_logit_bias[str(int(x))] = bias
            debug_msg('logit_bias_map', logit_bias, '->', new_logit_bias)
            logit_bias = new_logit_bias
        except KeyError:
            pass  # assume native tokens if we can't find the tokenizer

        logits_processor = [LogitsBiasProcessor(logit_bias)]

    logprobs = None  # coming to chat eventually
    if 'logprobs' in body:
        logprobs = body.get('logprobs', 0)  # maybe cap at topk? don't clamp 0-5.
        generate_params['logprob_proc'] = LogprobProcessor(logprobs)
        logits_processor.extend([generate_params['logprob_proc']])
    else:
        logprobs = None

    if logits_processor:  # requires logits_processor support
        generate_params['logits_processor'] = LogitsProcessorList(logits_processor)

    return generate_params


def convert_history(history):
    '''
    Chat histories in this program are in the format [message, reply].
    This function converts OpenAI histories to that format.
    '''
    chat_dialogue = []
    current_message = ""
    current_reply = ""
    user_input = ""
    system_message = ""

    for entry in history:
        content = entry["content"]
        role = entry["role"]

        if role == "user":
            user_input = content
            if current_message:
                chat_dialogue.append([current_message, ''])
                current_message = ""
            current_message = content
        elif role == "assistant":
            current_reply = content
            if current_message:
                chat_dialogue.append([current_message, current_reply])
                current_message = ""
                current_reply = ""
            else:
                chat_dialogue.append(['', current_reply])
        elif role == "system":
            system_message = content

    # if current_message:
    #     chat_dialogue.append([current_message, ''])

    return user_input, system_message, {'internal': chat_dialogue, 'visible': copy.deepcopy(chat_dialogue)}


def chat_completions_common(body: dict, is_legacy: bool = False, stream=False) -> dict:
    if body.get('functions', []):
        raise InvalidRequestError(message="functions is not supported.", param='functions')

    if body.get('function_call', ''):
        raise InvalidRequestError(message="function_call is not supported.", param='function_call')

    if 'messages' not in body:
        raise InvalidRequestError(message="messages is required", param='messages')

    messages = body['messages']
    for m in messages:
        if 'role' not in m:
            raise InvalidRequestError(message="messages: missing role", param='messages')
        elif m['role'] == 'function':
            raise InvalidRequestError(message="role: function is not supported.", param='messages')
        if 'content' not in m:
            raise InvalidRequestError(message="messages: missing content", param='messages')

    # Chat Completions
    object_type = 'chat.completions' if not stream else 'chat.completions.chunk'
    created_time = int(time.time())
    cmpl_id = "chatcmpl-%d" % (int(time.time() * 1000000000))
    resp_list = 'data' if is_legacy else 'choices'

    # generation parameters
    generate_params = process_parameters(body, is_legacy=is_legacy)
    continue_ = body['continue_']

    # Instruction template
    instruction_template = body['instruction_template'] or shared.settings['instruction_template']
    instruction_template = "Alpaca" if instruction_template == "None" else instruction_template
    name1_instruct, name2_instruct, _, _, context_instruct, turn_template, system_message = load_character_memoized(instruction_template, '', '', instruct=True)
    name1_instruct = body['name1_instruct'] or name1_instruct
    name2_instruct = body['name2_instruct'] or name2_instruct
    context_instruct = body['context_instruct'] or context_instruct
    turn_template = body['turn_template'] or turn_template

    # Chat character
    character = body['character'] or shared.settings['character']
    character = "Assistant" if character == "None" else character
    name1 = body['name1'] or shared.settings['name1']
    name1, name2, _, greeting, context, _, _ = load_character_memoized(character, name1, '', instruct=False)
    name2 = body['name2'] or name2
    context = body['context'] or context
    greeting = body['greeting'] or greeting

    # History
    user_input, custom_system_message, history = convert_history(messages)

    generate_params.update({
        'mode': body['mode'],
        'name1': name1,
        'name2': name2,
        'context': context,
        'greeting': greeting,
        'name1_instruct': name1_instruct,
        'name2_instruct': name2_instruct,
        'context_instruct': context_instruct,
        'system_message': system_message,
        'custom_system_message': custom_system_message,
        'turn_template': turn_template,
        'chat-instruct_command': body['chat_instruct_command'],
        'history': history,
        'stream': stream
    })

    max_tokens = generate_params['max_new_tokens']
    if max_tokens in [None, 0]:
        generate_params['max_new_tokens'] = 200
        generate_params['auto_max_new_tokens'] = True

    requested_model = generate_params.pop('model')
    logprob_proc = generate_params.pop('logprob_proc', None)

    def chat_streaming_chunk(content):
        # begin streaming
        chunk = {
            "id": cmpl_id,
            "object": object_type,
            "created": created_time,
            "model": shared.model_name,
            resp_list: [{
                "index": 0,
                "finish_reason": None,
                # So yeah... do both methods? delta and messages.
                "message": {'role': 'assistant', 'content': content},
                "delta": {'role': 'assistant', 'content': content},
            }],
        }

        if logprob_proc:  # not official for chat yet
            top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
            chunk[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
        # else:
        #    chunk[resp_list][0]["logprobs"] = None
        return chunk

    if stream:
        yield chat_streaming_chunk('')

    # generate reply #######################################
    prompt = generate_chat_prompt(user_input, generate_params)
    token_count = len(encode(prompt)[0])
    debug_msg({'prompt': prompt, 'generate_params': generate_params})

    generator = generate_chat_reply(
        user_input, generate_params, regenerate=False, _continue=continue_, loading_message=False)

    answer = ''
    seen_content = ''
    completion_token_count = 0

    for a in generator:
        answer = a['internal'][-1][1]
        if stream:
            len_seen = len(seen_content)
            new_content = answer[len_seen:]

            if not new_content or chr(0xfffd) in new_content:  # partial unicode character, don't send it yet.
                continue

            seen_content = answer
            chunk = chat_streaming_chunk(new_content)
            yield chunk

    completion_token_count = len(encode(answer)[0])
    stop_reason = "stop"
    if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= generate_params['max_new_tokens']:
        stop_reason = "length"

    if stream:
        chunk = chat_streaming_chunk('')
        chunk[resp_list][0]['finish_reason'] = stop_reason
        chunk['usage'] = {
            "prompt_tokens": token_count,
            "completion_tokens": completion_token_count,
            "total_tokens": token_count + completion_token_count
        }

        yield chunk
    else:
        resp = {
            "id": cmpl_id,
            "object": object_type,
            "created": created_time,
            "model": shared.model_name,
            resp_list: [{
                "index": 0,
                "finish_reason": stop_reason,
                "message": {"role": "assistant", "content": answer}
            }],
            "usage": {
                "prompt_tokens": token_count,
                "completion_tokens": completion_token_count,
                "total_tokens": token_count + completion_token_count
            }
        }
        if logprob_proc:  # not official for chat yet
            top_logprobs = convert_logprobs_to_tiktoken(model=requested_model, logprobs=logprob_proc.token_alternatives)
            resp[resp_list][0]["logprobs"] = {'top_logprobs': [top_logprobs]}
        # else:
        #     resp[resp_list][0]["logprobs"] = None

        yield resp


def completions_common(body: dict, is_legacy: bool = False, stream=False):
    object_type = 'text_completion.chunk' if stream else 'text_completion'
    created_time = int(time.time())
    cmpl_id = "conv-%d" % (int(time.time() * 1000000000))
    resp_list = 'data' if is_legacy else 'choices'

    prompt_str = 'context' if is_legacy else 'prompt'

    # ... encoded as a string, array of strings, array of tokens, or array of token arrays.
    if prompt_str not in body:
        raise InvalidRequestError("Missing required input", param=prompt_str)

    # common params
    generate_params = process_parameters(body, is_legacy=is_legacy)
    max_tokens = generate_params['max_new_tokens']
    generate_params['stream'] = stream
    requested_model = generate_params.pop('model')
    logprob_proc = generate_params.pop('logprob_proc', None)
    suffix = body['suffix'] if body['suffix'] else ''
    echo = body['echo']

    if not stream:
        prompt_arg = body[prompt_str]
        if isinstance(prompt_arg, str) or (isinstance(prompt_arg, list) and isinstance(prompt_arg[0], int)):
            prompt_arg = [prompt_arg]

        resp_list_data = []
        total_completion_token_count = 0
        total_prompt_token_count = 0

        for idx, prompt in enumerate(prompt_arg, start=0):
            if isinstance(prompt[0], int):
                # token lists
                if requested_model == shared.model_name:
                    prompt = decode(prompt)[0]
                else:
                    try:
                        encoder = tiktoken.encoding_for_model(requested_model)
                        prompt = encoder.decode(prompt)
                    except KeyError:
                        prompt = decode(prompt)[0]

            prefix = prompt if echo else ''
            token_count = len(encode(prompt)[0])
            total_prompt_token_count += token_count

            # generate reply #######################################
            debug_msg({'prompt': prompt, 'generate_params': generate_params})
            generator = generate_reply(prompt, generate_params, is_chat=False)
            answer = ''

            for a in generator:
                answer = a

            completion_token_count = len(encode(answer)[0])
            total_completion_token_count += completion_token_count
            stop_reason = "stop"
            if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens:
                stop_reason = "length"

            respi = {
                "index": idx,
                "finish_reason": stop_reason,
                "text": prefix + answer + suffix,
                "logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None,
            }

            resp_list_data.extend([respi])

        resp = {
            "id": cmpl_id,
            "object": object_type,
            "created": created_time,
            "model": shared.model_name,
            resp_list: resp_list_data,
            "usage": {
                "prompt_tokens": total_prompt_token_count,
                "completion_tokens": total_completion_token_count,
                "total_tokens": total_prompt_token_count + total_completion_token_count
            }
        }

        yield resp
    else:
        prompt = body[prompt_str]
        if isinstance(prompt, list):
            if prompt and isinstance(prompt[0], int):
                try:
                    encoder = tiktoken.encoding_for_model(requested_model)
                    prompt = encoder.decode(prompt)
                except KeyError:
                    prompt = decode(prompt)[0]
            else:
                raise InvalidRequestError(message="API Batched generation not yet supported.", param=prompt_str)

        prefix = prompt if echo else ''
        token_count = len(encode(prompt)[0])

        def text_streaming_chunk(content):
            # begin streaming
            chunk = {
                "id": cmpl_id,
                "object": object_type,
                "created": created_time,
                "model": shared.model_name,
                resp_list: [{
                    "index": 0,
                    "finish_reason": None,
                    "text": content,
                    "logprobs": {'top_logprobs': [logprob_proc.token_alternatives]} if logprob_proc else None,
                }],
            }

            return chunk

        yield text_streaming_chunk(prefix)

        # generate reply #######################################
        debug_msg({'prompt': prompt, 'generate_params': generate_params})
        generator = generate_reply(prompt, generate_params, is_chat=False)

        answer = ''
        seen_content = ''
        completion_token_count = 0

        for a in generator:
            answer = a

            len_seen = len(seen_content)
            new_content = answer[len_seen:]

            if not new_content or chr(0xfffd) in new_content:  # partial unicode character, don't send it yet.
                continue

            seen_content = answer
            chunk = text_streaming_chunk(new_content)
            yield chunk

        completion_token_count = len(encode(answer)[0])
        stop_reason = "stop"
        if token_count + completion_token_count >= generate_params['truncation_length'] or completion_token_count >= max_tokens:
            stop_reason = "length"

        chunk = text_streaming_chunk(suffix)
        chunk[resp_list][0]["finish_reason"] = stop_reason
        chunk["usage"] = {
            "prompt_tokens": token_count,
            "completion_tokens": completion_token_count,
            "total_tokens": token_count + completion_token_count
        }

        yield chunk


def chat_completions(body: dict, is_legacy: bool = False) -> dict:
    generator = chat_completions_common(body, is_legacy, stream=False)
    return deque(generator, maxlen=1).pop()


def stream_chat_completions(body: dict, is_legacy: bool = False):
    for resp in chat_completions_common(body, is_legacy, stream=True):
        yield resp


def completions(body: dict, is_legacy: bool = False) -> dict:
    generator = completions_common(body, is_legacy, stream=False)
    return deque(generator, maxlen=1).pop()


def stream_completions(body: dict, is_legacy: bool = False):
    for resp in completions_common(body, is_legacy, stream=True):
        yield resp