File size: 48,328 Bytes
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a18659
 
 
 
 
 
 
 
 
 
 
 
efbe3bf
 
 
 
 
4a18659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed9bfa
 
 
 
 
 
 
 
 
 
 
 
fa217ce
4ed9bfa
efbe3bf
4ed9bfa
 
 
 
 
 
 
 
fa217ce
4ed9bfa
fa217ce
 
 
 
 
5ae46d2
4ed9bfa
 
 
 
 
fa217ce
4ed9bfa
 
 
efbe3bf
5ae46d2
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd66f82
efbe3bf
 
 
fb8cfb6
 
 
 
dd66f82
 
 
 
 
 
 
 
 
efbe3bf
 
 
 
 
dd66f82
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
dd66f82
 
 
fb8d818
 
 
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3e4ea
efbe3bf
 
 
 
 
 
 
 
 
fb8cfb6
 
 
df3e4ea
efbe3bf
 
 
 
 
 
 
dd66f82
 
efbe3bf
 
dd66f82
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8cfb6
 
 
efbe3bf
816b392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c6480
dd66f82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a21c19
 
df3e4ea
9dd2023
 
 
dd66f82
7a21c19
 
 
 
dd66f82
 
 
 
 
 
 
 
7a21c19
 
dd66f82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd2023
 
dd66f82
9dd2023
 
7a21c19
dd66f82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dd2023
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8cfb6
 
 
816b392
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbe3bf
 
 
46c6480
 
 
dd66f82
 
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
4ed9bfa
fb8cfb6
 
 
efbe3bf
 
 
 
 
 
 
 
fb8cfb6
 
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8d818
 
 
fb8cfb6
 
 
fb8d818
efbe3bf
 
 
 
fb8d818
 
efbe3bf
 
 
fb8d818
 
 
 
 
 
 
efbe3bf
 
fb8cfb6
 
 
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25e6e8b
efbe3bf
25e6e8b
efbe3bf
 
 
 
 
 
 
 
 
81f019a
efbe3bf
81f019a
efbe3bf
 
 
 
 
81f019a
 
efbe3bf
 
 
dd66f82
 
 
 
 
efbe3bf
dd66f82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbe3bf
 
fb8d818
 
 
 
 
 
efbe3bf
 
fb8d818
efbe3bf
fb8d818
efbe3bf
fb8d818
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8d818
fb8cfb6
 
 
efbe3bf
fb8d818
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8d818
 
 
 
 
efbe3bf
fb8d818
efbe3bf
fb8d818
efbe3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8d818
efbe3bf
fb8d818
efbe3bf
 
 
 
 
 
6be4ec1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
# test1: MJ17 direct
# test2: "A1YU101" thailand cross-ref
# test3: "EBK109" thailand cross-ref
# test4: "OQ731952"/"BST115" for search query title: "South Asian maternal and paternal lineages in southern Thailand and"
import data_preprocess
import model
import mtdna_classifier
#import app
import smart_fallback
import pandas as pd
from pathlib import Path
import subprocess
from NER.html import extractHTML
import os
import google.generativeai as genai
import re
import standardize_location
# Helper functions in for this pipeline
# Track time
import time
import multiprocessing
import gspread
from googleapiclient.discovery import build
from googleapiclient.http import MediaFileUpload, MediaIoBaseDownload
from google.oauth2.service_account import Credentials
from oauth2client.service_account import ServiceAccountCredentials
import io
import json
#––– Authentication setup –––
GDRIVE_PARENT_FOLDER_NAME = "mtDNA-Location-Classifier"
GDRIVE_DATA_FOLDER_NAME = os.environ["GDRIVE_DATA_FOLDER_NAME"]
GCP_CREDS_DICT = json.loads(os.environ["GCP_CREDS_JSON"])  # from HF secrets
GDRIVE_CREDS = Credentials.from_service_account_info(GCP_CREDS_DICT, scopes=["https://www.googleapis.com/auth/drive"])
drive_service = build("drive", "v3", credentials=GDRIVE_CREDS)

def get_or_create_drive_folder(name, parent_id=None):
    query = f"name='{name}' and mimeType='application/vnd.google-apps.folder'"
    if parent_id:
        query += f" and '{parent_id}' in parents"
    results = drive_service.files().list(q=query, spaces='drive', fields="files(id, name)").execute()
    items = results.get("files", [])
    if items:
        return items[0]["id"]
    file_metadata = {
        "name": name,
        "mimeType": "application/vnd.google-apps.folder"
    }
    if parent_id:
        file_metadata["parents"] = [parent_id]
    file = drive_service.files().create(body=file_metadata, fields="id").execute()
    return file["id"]
# def find_drive_file(filename, parent_id):
#     """
#     Checks if a file with the given name exists inside the specified Google Drive folder.
#     Returns the file ID if found, else None.
#     """
#     query = f"'{parent_id}' in parents and name = '{filename}' and trashed = false"
#     results = drive_service.files().list(q=query, spaces='drive', fields='files(id, name)', pageSize=1).execute()
#     files = results.get('files', [])
#     if files:
#         return files[0]["id"]
#     return None

def find_drive_file(filename, parent_id):
    """
    Checks if a file with the given name exists inside the specified Google Drive folder.
    Returns the file ID if found, else None.
    """
    try:
        print(f"πŸ” Searching for '{filename}' in folder: {parent_id}")
        query = f"'{parent_id}' in parents and name = '{filename}' and trashed = false"
        results = drive_service.files().list(
            q=query,
            spaces='drive',
            fields='files(id, name)',
            pageSize=1
        ).execute()
        files = results.get('files', [])
        if files:
            print(f"βœ… Found file: {files[0]['name']} with ID: {files[0]['id']}")
            return files[0]["id"]
        else:
            print("⚠️ File not found.")
            return None
    except Exception as e:
        print(f"❌ Error during find_drive_file: {e}")
        return None



# def upload_file_to_drive(local_path, remote_name, folder_id):
#     file_metadata = {"name": remote_name, "parents": [folder_id]}
#     media = MediaFileUpload(local_path, resumable=True)
#     existing = drive_service.files().list(q=f"name='{remote_name}' and '{folder_id}' in parents", fields="files(id)").execute().get("files", [])
#     if existing:
#         drive_service.files().delete(fileId=existing[0]["id"]).execute()
#     file = drive_service.files().create(body=file_metadata, media_body=media, fields="id").execute()
#     result = drive_service.files().list(q=f"name='{remote_name}' and '{folder_id}' in parents", fields="files(id)").execute()
#     if not result.get("files"):
#         print(f"❌ Upload failed: File '{remote_name}' not found in folder after upload.")
#     else:
#         print(f"βœ… Verified upload: {remote_name}")
#     return file["id"]
def upload_file_to_drive(local_path, remote_name, folder_id):
    try:
        if not os.path.exists(local_path):
            raise FileNotFoundError(f"❌ Local file does not exist: {local_path}")

        # Delete existing file on Drive if present
        existing = drive_service.files().list(
            q=f"name='{remote_name}' and '{folder_id}' in parents and trashed = false",
            fields="files(id)"
        ).execute().get("files", [])

        if existing:
            drive_service.files().delete(fileId=existing[0]["id"]).execute()
            print(f"πŸ—‘οΈ Deleted existing '{remote_name}' in Drive folder {folder_id}")

        file_metadata = {"name": remote_name, "parents": [folder_id]}
        media = MediaFileUpload(local_path, resumable=True)
        file = drive_service.files().create(
            body=file_metadata,
            media_body=media,
            fields="id"
        ).execute()

        print(f"βœ… Uploaded '{remote_name}' to Google Drive folder ID: {folder_id}")
        return file["id"]

    except Exception as e:
        print(f"❌ Error during upload: {e}")
        return None


def download_file_from_drive(remote_name, folder_id, local_path):
    results = drive_service.files().list(q=f"name='{remote_name}' and '{folder_id}' in parents", fields="files(id)").execute()
    files = results.get("files", [])
    if not files:
        return False
    file_id = files[0]["id"]
    request = drive_service.files().get_media(fileId=file_id)
    fh = io.FileIO(local_path, 'wb')
    downloader = MediaIoBaseDownload(fh, request)
    done = False
    while not done:
        _, done = downloader.next_chunk()
    return True
def download_drive_file_content(file_id):
    request = drive_service.files().get_media(fileId=file_id)
    fh = io.BytesIO()
    downloader = MediaIoBaseDownload(fh, request)
    done = False
    while not done:
        _, done = downloader.next_chunk()
    fh.seek(0)
    return fh.read().decode("utf-8")

# def run_with_timeout(func, args=(), kwargs={}, timeout=20):
#     """
#     Runs `func` with timeout in seconds. Kills if it exceeds.
#     Returns: (success, result or None)
#     """
#     def wrapper(q, *args, **kwargs):
#         try:
#             q.put(func(*args, **kwargs))
#         except Exception as e:
#             q.put(e)

#     q = multiprocessing.Queue()
#     p = multiprocessing.Process(target=wrapper, args=(q, *args), kwargs=kwargs)
#     p.start()
#     p.join(timeout)

#     if p.is_alive():
#         p.terminate()
#         p.join()
#         print(f"⏱️ Timeout exceeded ({timeout} sec) β€” function killed.")
#         return False, None
#     else:
#         result = q.get()
#         if isinstance(result, Exception):
#             raise result
#         return True, result
# def run_with_timeout(func, args=(), kwargs={}, timeout=30):
#     import concurrent.futures
#     with concurrent.futures.ThreadPoolExecutor(max_workers=1) as executor:
#         future = executor.submit(func, *args, **kwargs)
#         try:
#             return True, future.result(timeout=timeout)
#         except concurrent.futures.TimeoutError:
#             print(f"⏱️ Timeout exceeded ({timeout} sec) β€” function killed.")
#             return False, None

import multiprocessing

def run_with_timeout(func, args=(), kwargs={}, timeout=30):
    def wrapper(q, *args, **kwargs):
        try:
            result = func(*args, **kwargs)
            q.put((True, result))
        except Exception as e:
            q.put((False, e))

    q = multiprocessing.Queue()
    p = multiprocessing.Process(target=wrapper, args=(q, *args), kwargs=kwargs)
    p.start()
    p.join(timeout)

    if p.is_alive():
        p.terminate()
        p.join()
        print(f"⏱️ Timeout exceeded ({timeout} sec) β€” function killed.")
        return False, None

    if not q.empty():
        success, result = q.get()
        if success:
            return True, result
        else:
            raise result  # re-raise exception if needed

    return False, None



def time_it(func, *args, **kwargs):
    """
    Measure how long a function takes to run and return its result + time.
    """
    start = time.time()
    result = func(*args, **kwargs)
    end = time.time()
    elapsed = end - start
    print(f"⏱️ '{func.__name__}' took {elapsed:.3f} seconds")
    return result, elapsed
# --- Define Pricing Constants (for Gemini 1.5 Flash & text-embedding-004) ---    

def unique_preserve_order(seq):
    seen = set()
    return [x for x in seq if not (x in seen or seen.add(x))]
# Main execution
def pipeline_with_gemini(accessions,stop_flag=None, niche_cases=None, save_df=None):
  # output: country, sample_type, ethnic, location, money_cost, time_cost, explain
  # there can be one accession number in the accessions
  # Prices are per 1,000 tokens
  # Before each big step:
  if stop_flag is not None and stop_flag.value:
    print(f"πŸ›‘ Stop detected before starting {accession}, aborting early...")
    return {}
  # PRICE_PER_1K_INPUT_LLM = 0.000075  # $0.075 per 1M tokens
  # PRICE_PER_1K_OUTPUT_LLM = 0.0003   # $0.30 per 1M tokens
  # PRICE_PER_1K_EMBEDDING_INPUT = 0.000025 # $0.025 per 1M tokens
  # Gemini 2.5 Flash-Lite pricing per 1,000 tokens
  PRICE_PER_1K_INPUT_LLM = 0.00010      # $0.10 per 1M input tokens
  PRICE_PER_1K_OUTPUT_LLM = 0.00040     # $0.40 per 1M output tokens

  # Embedding-001 pricing per 1,000 input tokens
  PRICE_PER_1K_EMBEDDING_INPUT = 0.00015  # $0.15 per 1M input tokens  
  if not accessions:
    print("no input")
    return None
  else:  
    accs_output = {}
    #genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
    genai.configure(api_key=os.getenv("GOOGLE_API_KEY_BACKUP"))  
    for acc in accessions:
      print("start gemini: ", acc)  
      start = time.time()
      total_cost_title = 0
      jsonSM, links, article_text = {},[], ""
      acc_score = { "isolate": "",
                    "country":{},
                   "sample_type":{},
                   #"specific_location":{},
                   #"ethnicity":{},
                   "query_cost":total_cost_title,
                   "time_cost":None,
                   "source":links,
                    "file_chunk":"",
                   "file_all_output":""}
      if niche_cases:
        for niche in niche_cases:
          acc_score[niche] = {}
            
      meta = mtdna_classifier.fetch_ncbi_metadata(acc)
      country, spe_loc, ethnic, sample_type, col_date, iso, title, doi, pudID, features = meta["country"], meta["specific_location"], meta["ethnicity"], meta["sample_type"], meta["collection_date"], meta["isolate"], meta["title"], meta["doi"], meta["pubmed_id"], meta["all_features"]
      acc_score["isolate"] = iso
      print("meta: ",meta)  
      meta_expand = smart_fallback.fetch_ncbi(acc)
      print("meta expand: ", meta_expand)  
      # set up step: create the folder to save document
      chunk, all_output = "",""
      if pudID: 
        id = str(pudID)
        saveTitle = title
      else: 
        try:
          author_name = meta_expand["authors"].split(',')[0]  # Use last name only
        except:
          author_name = meta_expand["authors"] 
        saveTitle = title + "_" + col_date + "_" + author_name
        if title.lower() == "unknown" and col_date.lower()=="unknown" and   author_name.lower() == "unknown":
            saveTitle += "_" + acc
        id = "DirectSubmission"
      # folder_path = Path("/content/drive/MyDrive/CollectData/MVP/mtDNA-Location-Classifier/data/"+str(id))
      # if not folder_path.exists():
      #     cmd = f'mkdir /content/drive/MyDrive/CollectData/MVP/mtDNA-Location-Classifier/data/{id}'
      #     result = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
      #     print("data/"+str(id) +" created.")
      # else:
      #     print("data/"+str(id) +" already exists.")
      # saveLinkFolder = "/content/drive/MyDrive/CollectData/MVP/mtDNA-Location-Classifier/data/"+str(id)
      # parent_folder_id = get_or_create_drive_folder(GDRIVE_PARENT_FOLDER_NAME)
      # data_folder_id = get_or_create_drive_folder(GDRIVE_DATA_FOLDER_NAME, parent_id=parent_folder_id)
      # sample_folder_id = get_or_create_drive_folder(str(id), parent_id=data_folder_id)
      data_folder_id = GDRIVE_DATA_FOLDER_NAME  # Use the shared folder directly
      sample_folder_id = get_or_create_drive_folder(str(id), parent_id=data_folder_id)
      print("sample folder id: ", sample_folder_id)
      
      # Define document names
      if len(saveTitle) > 50:  
          saveName = saveTitle[:50]
          saveName = saveName.replace(" ", "_")
          chunk_filename = f"{saveName}_merged_document.docx"
          all_filename = f"{saveName}_all_merged_document.docx"
      else:
          saveName = saveTitle.replace(" ", "_")
          chunk_filename = f"{saveName}_merged_document.docx"
          all_filename = f"{saveName}_all_merged_document.docx"
      print("chunk file name and all filename: ", chunk_filename, all_filename)  
      # Define local temp paths for reading/writing
      # import tempfile
      # tmp_dir = tempfile.mkdtemp()
      LOCAL_TEMP_DIR = "/mnt/data/generated_docs"
      os.makedirs(LOCAL_TEMP_DIR, exist_ok=True)
      file_chunk_path = os.path.join(LOCAL_TEMP_DIR, chunk_filename)
      file_all_path = os.path.join(LOCAL_TEMP_DIR, all_filename)
      # file_chunk_path = os.path.join(tempfile.gettempdir(), chunk_filename)
      # file_all_path = os.path.join(tempfile.gettempdir(), all_filename)  
      if stop_flag is not None and stop_flag.value:
        print(f"πŸ›‘ Stop processing {accession}, aborting early...")
        return {}
      print("this is file chunk path: ", file_chunk_path)
      chunk_id = find_drive_file(chunk_filename, sample_folder_id)
      all_id = find_drive_file(all_filename, sample_folder_id)
    
      if chunk_id and all_id:
        print("βœ… Files already exist in Google Drive. Downloading them...")
        chunk_exists = download_file_from_drive(chunk_filename, sample_folder_id, file_chunk_path)
        all_exists = download_file_from_drive(all_filename, sample_folder_id, file_all_path)
        acc_score["file_chunk"] = str(chunk_filename)
        acc_score["file_all_output"] = str(all_filename)  
        print("chunk_id and all_id: ")
        print(chunk_id, all_id)  
        print("file chunk and all output saved in acc score: ", acc_score["file_chunk"], acc_score["file_all_output"])  
        file = drive_service.files().get(fileId="1LUJRTrq8yt4S4lLwCvTmlxaKqpr0nvEn", fields="id, name, parents, webViewLink").execute()
        print("πŸ“„ Name:", file["name"])
        print("πŸ“ Parent folder ID:", file["parents"][0])
        print("πŸ”— View link:", file["webViewLink"])
  
  
        # Read and parse these into `chunk` and `all_output`
      else:
        # πŸ”₯ Remove any stale local copies
        if os.path.exists(file_chunk_path):
            os.remove(file_chunk_path)
            print(f"πŸ—‘οΈ Removed stale: {file_chunk_path}")
        if os.path.exists(file_all_path):
            os.remove(file_all_path)
            print(f"πŸ—‘οΈ Removed stale: {file_all_path}")  
      # πŸ”₯ Remove the local file first if it exists
      # if os.path.exists(file_chunk_path):
      #   os.remove(file_chunk_path)
      #   print("remove chunk path")  
      # if os.path.exists(file_all_path):
      #   os.remove(file_all_path)    
      #   print("remove all path")  
      # Try to download if already exists on Drive
        chunk_exists = download_file_from_drive(chunk_filename, sample_folder_id, file_chunk_path)
        all_exists = download_file_from_drive(all_filename, sample_folder_id, file_all_path)
      print("chunk exist: ", chunk_exists)  
      # first way: ncbi method
      print("country.lower: ",country.lower())  
      if country.lower() != "unknown":
        stand_country = standardize_location.smart_country_lookup(country.lower())
        print("stand_country: ", stand_country)  
        if stand_country.lower() != "not found":
          acc_score["country"][stand_country.lower()] = ["ncbi"]
        else: acc_score["country"][country.lower()] = ["ncbi"]   
      # if spe_loc.lower() != "unknown":
      #   acc_score["specific_location"][spe_loc.lower()] = ["ncbi"]
      # if ethnic.lower() != "unknown":
      #   acc_score["ethnicity"][ethnic.lower()] = ["ncbi"]
      if sample_type.lower() != "unknown":
        acc_score["sample_type"][sample_type.lower()] = ["ncbi"]
      # second way: LLM model
      # Preprocess the input token
      print(acc_score)  
      accession, isolate = None, None
      if acc != "unknown":  accession = acc
      if iso != "unknown":  isolate = iso
      if stop_flag is not None and stop_flag.value:
        print(f"πŸ›‘ Stop processing {accession}, aborting early...")
        return {}    
      # check doi first
      print("chunk filename: ", chunk_filename)    
      if chunk_exists:
        print("File chunk exists!")
        if not chunk:
            print("start to get chunk")
            text, table, document_title = model.read_docx_text(file_chunk_path)
            chunk = data_preprocess.normalize_for_overlap(text) + "\n" + data_preprocess.normalize_for_overlap(". ".join(table))
        if str(chunk_filename) != "":
            print("first time have chunk path at chunk exist: ", str(chunk_filename))
            acc_score["file_chunk"] = str(chunk_filename)    
      if all_exists:
        print("File all output exists!")
        if not all_output:
            text_all, table_all, document_title_all = model.read_docx_text(file_all_path)
            all_output = data_preprocess.normalize_for_overlap(text_all) + "\n" + data_preprocess.normalize_for_overlap(". ".join(table_all))
        if str(all_filename) != "":
            print("first time have all path at all exist: ", str(all_filename))
            acc_score["file_all_output"] = str(all_filename)    
      print("acc sscore for file all output and chunk: ", acc_score["file_all_output"], acc_score["file_chunk"])  
      if len(acc_score["file_all_output"]) == 0 and len(acc_score["file_chunk"]) == 0:  
          if doi != "unknown":
            link = 'https://doi.org/' + doi
            # get the file to create listOfFile for each id
            print("link of doi: ", link)  
            html = extractHTML.HTML("",link)
            jsonSM = html.getSupMaterial()
            article_text = html.getListSection()
            if article_text:
              if "Just a moment...Enable JavaScript and cookies to continue".lower() not in article_text.lower() or "403 Forbidden Request".lower() not in article_text.lower():
                links.append(link)
            if jsonSM:
              links += sum((jsonSM[key] for key in jsonSM),[])
          # no doi then google custom search api
          if doi=="unknown" or len(article_text) == 0 or "Just a moment...Enable JavaScript and cookies to continue".lower() in article_text.lower() or "403 Forbidden Request".lower() in article_text.lower():
            # might find the article
            print("no article text, start tem link")  
            #tem_links = mtdna_classifier.search_google_custom(title, 2)
            tem_links = smart_fallback.smart_google_search(meta_expand)
            print("tem links: ", tem_links)  
            tem_link_acc = smart_fallback.google_accession_search(acc)
            tem_links += tem_link_acc 
            tem_links = unique_preserve_order(tem_links)
            print("tem link before filtering: ", tem_links)  
            # filter the quality link  
            print("saveLinkFolder as sample folder id: ", sample_folder_id)  
            print("start the smart filter link") 
            if stop_flag is not None and stop_flag.value:
                print(f"πŸ›‘ Stop processing {accession}, aborting early...")
                return {}  
            # success_process, output_process = run_with_timeout(smart_fallback.filter_links_by_metadata,args=(tem_links,sample_folder_id),kwargs={"accession":acc})
            # if success_process:
            #   links = output_process
            #   print("yes succeed for smart filter link")
            # else: 
            #   print("no suceed, fallback to all tem links")
            #   links = tem_links
            links = smart_fallback.filter_links_by_metadata(tem_links, saveLinkFolder=sample_folder_id, accession=acc, stop_flag=stop_flag)
          print("this is links: ",links)    
          links = unique_preserve_order(links)
          acc_score["source"] = links
      else:
        print("inside the try of reusing chunk or all output")  
        #print("chunk filename: ", str(chunks_filename))  
          
        try:
            temp_source = False
            if save_df is not None and not save_df.empty:
                print("save df not none")  
                print("chunk file name: ",str(chunk_filename))
                print("all filename: ",str(all_filename))
                if acc_score["file_chunk"]:
                  link = save_df.loc[save_df["file_chunk"]==acc_score["file_chunk"],"Sources"].iloc[0]
                  #link = row["Sources"].iloc[0]
                  if "http" in link:   
                    print("yeah http in save df source") 
                    acc_score["source"] = [x for x in link.split("\n") if x.strip()]#row["Sources"].tolist()
                  else:  # temporary  
                    print("tempo source") 
                    #acc_score["source"] = [str(all_filename), str(chunks_filename)]
                    temp_source = True
                elif acc_score["file_all_output"]:
                  link = save_df.loc[save_df["file_all_output"]==acc_score["file_all_output"],"Sources"].iloc[0]
                  #link = row["Sources"].iloc[0]
                  print(link)
                  print("list of link")
                  print([x for x in link.split("\n") if x.strip()])
                  if "http" in link:    
                    print("yeah http in save df source")
                    acc_score["source"] = [x for x in link.split("\n") if x.strip()]#row["Sources"].tolist()   
                  else:  # temporary  
                    print("tempo source") 
                    #acc_score["source"] = [str(all_filename), str(chunks_filename)]
                    temp_source = True      
                else:  # temporary  
                  print("tempo source") 
                  #acc_score["source"] = [str(file_all_path), str(file_chunk_path)]  
                  temp_source = True
            else:  # temporary  
                print("tempo source") 
                  #acc_score["source"] = [str(file_all_path), str(file_chunk_path)]  
                temp_source = True      
            if temp_source:
                print("temp source is true so have to try again search link")
                if doi != "unknown":
                    link = 'https://doi.org/' + doi
                    # get the file to create listOfFile for each id
                    print("link of doi: ", link)  
                    html = extractHTML.HTML("",link)
                    jsonSM = html.getSupMaterial()
                    article_text = html.getListSection()
                    if article_text:
                      if "Just a moment...Enable JavaScript and cookies to continue".lower() not in article_text.lower() or "403 Forbidden Request".lower() not in article_text.lower():
                        links.append(link)
                    if jsonSM:
                      links += sum((jsonSM[key] for key in jsonSM),[])
                  # no doi then google custom search api
                if doi=="unknown" or len(article_text) == 0 or "Just a moment...Enable JavaScript and cookies to continue".lower() in article_text.lower() or "403 Forbidden Request".lower() in article_text.lower():
                    # might find the article
                    print("no article text, start tem link")  
                    #tem_links = mtdna_classifier.search_google_custom(title, 2)
                    tem_links = smart_fallback.smart_google_search(meta_expand)
                    print("tem links: ", tem_links)  
                    tem_link_acc = smart_fallback.google_accession_search(acc)
                    tem_links += tem_link_acc 
                    tem_links = unique_preserve_order(tem_links)
                    print("tem link before filtering: ", tem_links)  
                    # filter the quality link  
                    print("saveLinkFolder as sample folder id: ", sample_folder_id)  
                    print("start the smart filter link") 
                    if stop_flag is not None and stop_flag.value:
                        print(f"πŸ›‘ Stop processing {accession}, aborting early...")
                        return {}  
                    # success_process, output_process = run_with_timeout(smart_fallback.filter_links_by_metadata,args=(tem_links,sample_folder_id),kwargs={"accession":acc})
                    # if success_process:
                    #   links = output_process
                    #   print("yes succeed for smart filter link")
                    # else: 
                    #   print("no suceed, fallback to all tem links")
                    #   links = tem_links
                    links = smart_fallback.filter_links_by_metadata(tem_links, saveLinkFolder=sample_folder_id, accession=acc, stop_flag=stop_flag)
                print("this is links: ",links)    
                links = unique_preserve_order(links)
                acc_score["source"] = links
        except:
            print("except for source")  
            acc_score["source"] = []
      # chunk_path = "/"+saveTitle+"_merged_document.docx"
      # all_path = "/"+saveTitle+"_all_merged_document.docx"
      # # if chunk and all output not exist yet
      # file_chunk_path = saveLinkFolder + chunk_path
      # file_all_path = saveLinkFolder + all_path
      # if os.path.exists(file_chunk_path):
      #   print("File chunk exists!")
      #   if not chunk:
      #     text, table, document_title = model.read_docx_text(file_chunk_path)
      #     chunk = data_preprocess.normalize_for_overlap(text) + "\n" + data_preprocess.normalize_for_overlap(". ".join(table))
      # if os.path.exists(file_all_path):
      #   print("File all output exists!")
      #   if not all_output:
      #     text_all, table_all, document_title_all = model.read_docx_text(file_all_path)
      #     all_output = data_preprocess.normalize_for_overlap(text_all) + "\n" + data_preprocess.normalize_for_overlap(". ".join(table_all))
      if stop_flag is not None and stop_flag.value:
        print(f"πŸ›‘ Stop processing {accession}, aborting early...")
        return {}
      # print("chunk filename: ", chunk_filename)    
      # if chunk_exists:
      #   print("File chunk exists!")
      #   if not chunk:
      #       print("start to get chunk")
      #       text, table, document_title = model.read_docx_text(file_chunk_path)
      #       chunk = data_preprocess.normalize_for_overlap(text) + "\n" + data_preprocess.normalize_for_overlap(". ".join(table))
      #   if str(chunk_filename) != "":
      #       print("first time have chunk path at chunk exist: ", str(chunk_filename))
      #       acc_score["file_chunk"] = str(chunk_filename)    
      # if all_exists:
      #   print("File all output exists!")
      #   if not all_output:
      #       text_all, table_all, document_title_all = model.read_docx_text(file_all_path)
      #       all_output = data_preprocess.normalize_for_overlap(text_all) + "\n" + data_preprocess.normalize_for_overlap(". ".join(table_all))
      #   if str(all_filename) != "":
      #       print("first time have all path at all exist: ", str(all_filename))
      #       acc_score["file_all_output"] = str(all_filename)    
      if not chunk and not all_output:
        print("not chunk and all output")  
        # else: check if we can reuse these chunk and all output of existed accession to find another
        if str(chunk_filename) != "":
          print("first time have chunk path: ", str(chunk_filename))
          acc_score["file_chunk"] = str(chunk_filename)
        if str(all_filename) != "":
          print("first time have all path: ", str(all_filename))
          acc_score["file_all_output"] = str(all_filename)    
        if links:
          for link in links:
              print(link)
              # if len(all_output) > 1000*1000:
              #   all_output = data_preprocess.normalize_for_overlap(all_output)
              #   print("after normalizing all output: ", len(all_output))
              if len(data_preprocess.normalize_for_overlap(all_output)) > 600000:
                print("break here")
                break
              if iso != "unknown": query_kw = iso
              else: query_kw = acc
              #text_link, tables_link, final_input_link = data_preprocess.preprocess_document(link,saveLinkFolder, isolate=query_kw)
              success_process, output_process = run_with_timeout(data_preprocess.preprocess_document,args=(link,sample_folder_id),kwargs={"isolate":query_kw,"accession":acc},timeout=100)
              if stop_flag is not None and stop_flag.value:
                print(f"πŸ›‘ Stop processing {accession}, aborting early...")
                return {}
              if success_process:
                text_link, tables_link, final_input_link = output_process[0], output_process[1], output_process[2]
                print("yes succeed for process document")
              else: text_link, tables_link, final_input_link = "", "", ""  
              context = data_preprocess.extract_context(final_input_link, query_kw)
              if context !=  "Sample ID not found.":
                if len(data_preprocess.normalize_for_overlap(chunk)) < 1000*1000:
                  success_chunk, the_output_chunk = run_with_timeout(data_preprocess.merge_texts_skipping_overlap,args=(chunk, context))
                  if stop_flag is not None and stop_flag.value:
                    print(f"πŸ›‘ Stop processing {accession}, aborting early...")
                    return {}
                  if success_chunk:
                    chunk = the_output_chunk#data_preprocess.merge_texts_skipping_overlap(all_output, final_input_link)
                    print("yes succeed for chunk")
                  else:
                    chunk += context
                    print("len context: ", len(context))
                    print("basic fall back")
                print("len chunk after: ", len(chunk))
              if len(final_input_link) > 1000*1000:
                if context !=  "Sample ID not found.":
                  final_input_link =  context 
                else:
                  final_input_link = data_preprocess.normalize_for_overlap(final_input_link)
                  if len(final_input_link) > 1000 *1000:
                    final_input_link = final_input_link[:100000] 
              if len(data_preprocess.normalize_for_overlap(all_output)) < int(100000) and len(final_input_link)<100000:
                print("Running merge_texts_skipping_overlap with timeout")
                success, the_output = run_with_timeout(data_preprocess.merge_texts_skipping_overlap,args=(all_output, final_input_link),timeout=30)
                if stop_flag is not None and stop_flag.value:
                  print(f"πŸ›‘ Stop processing {accession}, aborting early...")
                  return {}
                print("Returned from timeout logic")
                if success:
                  all_output = the_output#data_preprocess.merge_texts_skipping_overlap(all_output, final_input_link)
                  print("yes succeed")
                else:
                  print("len all output: ", len(all_output))
                  print("len final input link: ", len(final_input_link))
                  all_output += final_input_link
                  print("len final input: ", len(final_input_link))
                  print("basic fall back")
              else:
                  print("both/either all output or final link too large more than 100000")
                  print("len all output: ", len(all_output))
                  print("len final input link: ", len(final_input_link))
                  all_output += final_input_link
                  print("len final input: ", len(final_input_link))
                  print("basic fall back")    
              print("len all output after: ", len(all_output))
          #country_pro, chunk, all_output = data_preprocess.process_inputToken(links, saveLinkFolder, accession=accession, isolate=isolate)
        if stop_flag is not None and stop_flag.value:
          print(f"πŸ›‘ Stop processing {accession}, aborting early...")
          return {}  
        else:
          chunk = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + features
          all_output = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + features
        if not chunk: chunk = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + features
        if not all_output:  all_output = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + features
        if len(all_output) > 1*1024*1024: 
          all_output = data_preprocess.normalize_for_overlap(all_output)
          if len(all_output) > 1*1024*1024:
            all_output = all_output[:1*1024*1024]
        print("chunk len: ", len(chunk))
        print("all output len: ", len(all_output))    
        data_preprocess.save_text_to_docx(chunk, file_chunk_path)
        data_preprocess.save_text_to_docx(all_output, file_all_path)
        # Later when saving new files
        # data_preprocess.save_text_to_docx(chunk, chunk_filename, sample_folder_id)
        # data_preprocess.save_text_to_docx(all_output, all_filename, sample_folder_id)
        
        # Upload to Drive
        result_chunk_upload = upload_file_to_drive(file_chunk_path, chunk_filename, sample_folder_id)
        result_all_upload = upload_file_to_drive(file_all_path, all_filename, sample_folder_id)
        print("UPLOAD RESULT FOR CHUNK: ", result_chunk_upload)
        print(f"πŸ”— Uploaded file: https://drive.google.com/file/d/{result_chunk_upload}/view")  
        print("here 1")
          
      # else:
      #   final_input = ""
      #   if all_output:
      #     final_input = all_output
      #   else:  
      #     if chunk: final_input = chunk
      #   #data_preprocess.merge_texts_skipping_overlap(final_input, all_output)
      #   if final_input:
      #     keywords = []
      #     if iso != "unknown":  keywords.append(iso)
      #     if acc != "unknown":  keywords.append(acc)
      #     for keyword in keywords:
      #       chunkBFS = data_preprocess.get_contextual_sentences_BFS(final_input, keyword)
      #       countryDFS, chunkDFS = data_preprocess.get_contextual_sentences_DFS(final_input, keyword)
      #       chunk = data_preprocess.merge_texts_skipping_overlap(chunk, chunkDFS)
      #       chunk = data_preprocess.merge_texts_skipping_overlap(chunk, chunkBFS)
          
      # Define paths for cached RAG assets
      # faiss_index_path = saveLinkFolder+"/faiss_index.bin"
      # document_chunks_path = saveLinkFolder+"/document_chunks.json"
      # structured_lookup_path = saveLinkFolder+"/structured_lookup.json"
      print("here 2")
      faiss_filename = "faiss_index.bin"
      chunks_filename = "document_chunks.json"
      lookup_filename = "structured_lookup.json"
      print("name of faiss: ", faiss_filename)  
          
      faiss_index_path = os.path.join(LOCAL_TEMP_DIR, faiss_filename)
      document_chunks_path = os.path.join(LOCAL_TEMP_DIR, chunks_filename)
      structured_lookup_path = os.path.join(LOCAL_TEMP_DIR, lookup_filename)
      print("name if faiss path: ", faiss_index_path)  
      # πŸ”₯ Remove the local file first if it exists
      print("start faiss id and also the sample folder id is: ", sample_folder_id)  
      faiss_id = find_drive_file(faiss_filename, sample_folder_id)
      print("done faiss id")  
      document_id = find_drive_file(chunks_filename, sample_folder_id)
      structure_id = find_drive_file(lookup_filename, sample_folder_id)  
      if faiss_id and document_id and structure_id:
        print("βœ… 3 Files already exist in Google Drive. Downloading them...")
        download_file_from_drive(faiss_filename, sample_folder_id, faiss_index_path)
        download_file_from_drive(chunks_filename, sample_folder_id, document_chunks_path)
        download_file_from_drive(lookup_filename, sample_folder_id, structured_lookup_path)  
        # Read and parse these into `chunk` and `all_output`
      else:
        "one of id not exist"  
        if os.path.exists(faiss_index_path):
            print("faiss index exist and start to remove: ", faiss_index_path)
            os.remove(faiss_index_path)
        if os.path.exists(document_chunks_path):
            os.remove(document_chunks_path)
        if os.path.exists(structured_lookup_path):
            os.remove(structured_lookup_path)    
        print("start to download the faiss, chunk, lookup")
            
        download_file_from_drive(faiss_filename, sample_folder_id, faiss_index_path)
        download_file_from_drive(chunks_filename, sample_folder_id, document_chunks_path)
        download_file_from_drive(lookup_filename, sample_folder_id, structured_lookup_path)
      try:
          print("try gemini 2.5")
          print("move to load rag")
          master_structured_lookup, faiss_index, document_chunks = model.load_rag_assets(
              faiss_index_path, document_chunks_path, structured_lookup_path
          )
    
          global_llm_model_for_counting_tokens = genai.GenerativeModel('gemini-1.5-flash-latest')
          if not all_output:
            if chunk: all_output = chunk
            else: all_output = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + features
          if faiss_index is None:
              print("\nBuilding RAG assets (structured lookup, FAISS index, chunks)...")
              total_doc_embedding_tokens = global_llm_model_for_counting_tokens.count_tokens(
                  all_output
              ).total_tokens
    
              initial_embedding_cost = (total_doc_embedding_tokens / 1000) * PRICE_PER_1K_EMBEDDING_INPUT
              total_cost_title += initial_embedding_cost
              print(f"Initial one-time embedding cost for '{file_all_path}' ({total_doc_embedding_tokens} tokens): ${initial_embedding_cost:.6f}")
    
    
              master_structured_lookup, faiss_index, document_chunks, plain_text_content = model.build_vector_index_and_data(
                  file_all_path, faiss_index_path, document_chunks_path, structured_lookup_path
              )
          else:
              print("\nRAG assets loaded from file. No re-embedding of entire document will occur.")
              plain_text_content_all, table_strings_all, document_title_all = model.read_docx_text(file_all_path)
              master_structured_lookup['document_title'] = master_structured_lookup.get('document_title', document_title_all)
          if stop_flag is not None and stop_flag.value:
            print(f"πŸ›‘ Stop processing {accession}, aborting early...")
            return {}  
          primary_word = iso
          alternative_word = acc
          print(f"\n--- General Query: Primary='{primary_word}' (Alternative='{alternative_word}') ---")
          if features.lower() not in all_output.lower():  
            all_output += ". NCBI Features: " + features
          # country, sample_type, method_used, ethnic, spe_loc, total_query_cost =  model.query_document_info(
          #     primary_word, alternative_word, meta, master_structured_lookup, faiss_index, document_chunks, 
          #     model.call_llm_api, chunk=chunk, all_output=all_output)
          print("this is chunk for the model")
          print(chunk)
          print("this is all output for the model")
          print(all_output)  
          if stop_flag is not None and stop_flag.value:
            print(f"πŸ›‘ Stop processing {accession}, aborting early...")
            return {}
          country, sample_type, method_used, country_explanation, sample_type_explanation, total_query_cost =  model.query_document_info(
              primary_word, alternative_word, meta, master_structured_lookup, faiss_index, document_chunks, 
              model.call_llm_api, chunk=chunk, all_output=all_output)
          print("pass query of 2.5")
      except:
          print("try gemini 1.5")
          country, sample_type, ethnic, spe_loc, method_used, country_explanation, sample_type_explanation, ethnicity_explanation, specific_loc_explanation, total_query_cost = model.query_document_info(
            primary_word, alternative_word, meta, master_structured_lookup, faiss_index, document_chunks, 
            model.call_llm_api, chunk=chunk, all_output=all_output, model_ai="gemini-1.5-flash-latest")      
          print("yeah pass the query of 1.5")
      print("country using ai: ", country)
      print("sample type using ai: ", sample_type)  
      # if len(country) == 0: country = "unknown"
      # if len(sample_type) == 0: sample_type = "unknown"    
      # if country_explanation: country_explanation = "-"+country_explanation        
      # else: country_explanation = ""
      # if sample_type_explanation: sample_type_explanation = "-"+sample_type_explanation
      # else: sample_type_explanation = ""
      if len(country) == 0: country = "unknown"
      if len(sample_type) == 0: sample_type = "unknown"    
      if country_explanation and country_explanation!="unknown": country_explanation = "-"+country_explanation        
      else: country_explanation = ""
      if sample_type_explanation and sample_type_explanation!="unknown": sample_type_explanation = "-"+sample_type_explanation
      else: sample_type_explanation = ""
          
      if method_used == "unknown": method_used = ""
      if country.lower() != "unknown":
        stand_country = standardize_location.smart_country_lookup(country.lower())
        if stand_country.lower() != "not found":
          if stand_country.lower() in acc_score["country"]:
            if country_explanation:
              acc_score["country"][stand_country.lower()].append(method_used + country_explanation)
          else:
            acc_score["country"][stand_country.lower()] = [method_used + country_explanation]
        else:
          if country.lower() in acc_score["country"]:
            if country_explanation:
              if len(method_used + country_explanation) > 0:
                acc_score["country"][country.lower()].append(method_used + country_explanation)
          else:
            if len(method_used + country_explanation) > 0:
              acc_score["country"][country.lower()] = [method_used + country_explanation]
      # if spe_loc.lower() != "unknown":
      #   if spe_loc.lower() in acc_score["specific_location"]:
      #     acc_score["specific_location"][spe_loc.lower()].append(method_used)
      #   else:
      #     acc_score["specific_location"][spe_loc.lower()] = [method_used]
      # if ethnic.lower() != "unknown":
      #   if ethnic.lower() in acc_score["ethnicity"]:
      #     acc_score["ethnicity"][ethnic.lower()].append(method_used)
      #   else:
      #     acc_score["ethnicity"][ethnic.lower()] = [method_used]
      if sample_type.lower() != "unknown":
        if sample_type.lower() in acc_score["sample_type"]:
          if len(method_used + sample_type_explanation) > 0:
            acc_score["sample_type"][sample_type.lower()].append(method_used + sample_type_explanation)
        else:
          if len(method_used + sample_type_explanation)> 0:
            acc_score["sample_type"][sample_type.lower()] = [method_used + sample_type_explanation]
      total_cost_title += total_query_cost
      if stop_flag is not None and stop_flag.value:
        print(f"πŸ›‘ Stop processing {accession}, aborting early...")
        return {}
      # last resort: combine all information to give all output otherwise unknown
      if len(acc_score["country"]) == 0 or len(acc_score["sample_type"]) == 0 or acc_score["country"] == "unknown" or acc_score["sample_type"] == "unknown":   
        text = ""
        for key in meta_expand:
          text += str(key) + ": " + meta_expand[key] + "\n"    
        if len(data_preprocess.normalize_for_overlap(all_output)) > 0:
          text += data_preprocess.normalize_for_overlap(all_output)          
        if len(data_preprocess.normalize_for_overlap(chunk)) > 0:
          text += data_preprocess.normalize_for_overlap(chunk)            
        text += ". NCBI Features: " + features 
        print("this is text for the last resort model")
        print(text)  
        country, sample_type, method_used, country_explanation, sample_type_explanation, total_query_cost =  model.query_document_info(
            primary_word, alternative_word, meta, master_structured_lookup, faiss_index, document_chunks, 
            model.call_llm_api, chunk=text, all_output=text)  
        print("this is last resort results: ")
        print("country: ", country)
        print("sample type: ", sample_type)  
        if len(country) == 0: country = "unknown"
        if len(sample_type) == 0: sample_type = "unknown"    
        # if country_explanation: country_explanation = "-"+country_explanation        
        # else: country_explanation = ""
        # if sample_type_explanation: sample_type_explanation = "-"+sample_type_explanation
        # else: sample_type_explanation = ""
        if country_explanation and country_explanation!="unknown": country_explanation = "-"+country_explanation        
        else: country_explanation = ""
        if sample_type_explanation and sample_type_explanation!="unknown": sample_type_explanation = "-"+sample_type_explanation
        else: sample_type_explanation = ""
            
        if method_used == "unknown": method_used = ""
        if country.lower() != "unknown":
          stand_country = standardize_location.smart_country_lookup(country.lower())
          if stand_country.lower() != "not found":
            if stand_country.lower() in acc_score["country"]:
              if country_explanation:
                acc_score["country"][stand_country.lower()].append(method_used + country_explanation)
            else:
              acc_score["country"][stand_country.lower()] = [method_used + country_explanation]
          else:
            if country.lower() in acc_score["country"]:
              if country_explanation:
                if len(method_used + country_explanation) > 0:
                  acc_score["country"][country.lower()].append(method_used + country_explanation)
            else:
              if len(method_used + country_explanation) > 0:
                acc_score["country"][country.lower()] = [method_used + country_explanation]
        if sample_type.lower() != "unknown":
            if sample_type.lower() in acc_score["sample_type"]:
              if len(method_used + sample_type_explanation) > 0:
                acc_score["sample_type"][sample_type.lower()].append(method_used + sample_type_explanation)
            else:
              if len(method_used + sample_type_explanation)> 0:
                acc_score["sample_type"][sample_type.lower()] = [method_used + sample_type_explanation]          
        total_cost_title += total_query_cost
      end = time.time()
      #total_cost_title += total_query_cost
      acc_score["query_cost"] = f"{total_cost_title:.6f}"
      elapsed = end - start
      acc_score["time_cost"] = f"{elapsed:.3f} seconds"
      accs_output[acc] = acc_score
      print(accs_output[acc])
      
    return accs_output