File size: 79,278 Bytes
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e0e88
 
bdd4893
 
 
 
 
 
 
 
d3e0e88
 
 
 
 
 
 
 
 
 
 
 
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e0e88
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708f73
 
 
 
 
 
bdd4893
 
 
 
 
 
 
 
2708f73
bdd4893
 
2708f73
 
 
 
 
 
 
 
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63f173
bdd4893
 
 
 
 
a63f173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3e0e88
 
 
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cbd44c
 
 
 
 
 
 
 
 
 
 
 
a63f173
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cbd44c
bdd4893
 
9cbd44c
 
 
 
 
 
 
 
 
bdd4893
9cbd44c
a63f173
 
 
 
 
 
 
 
 
 
bdd4893
a63f173
 
 
 
 
 
 
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
756ed18
bdd4893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
import re
import pycountry
from docx import Document
import json
import os
import numpy as np
import faiss
from collections import defaultdict
import ast # For literal_eval
import math # For ceiling function
import data_preprocess
import mtdna_classifier
# --- IMPORTANT: UNCOMMENT AND CONFIGURE YOUR REAL API KEY ---
import google.generativeai as genai

#genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
genai.configure(api_key=os.getenv("GOOGLE_API_KEY_BACKUP"))

import nltk
from nltk.corpus import stopwords
try:
    nltk.data.find('corpora/stopwords')
except LookupError:
    nltk.download('stopwords')
nltk.download('punkt_tab')    
# # --- Define Pricing Constants (for Gemini 1.5 Flash & text-embedding-004) ---
# # Prices are per 1,000 tokens
# PRICE_PER_1K_INPUT_LLM = 0.000075  # $0.075 per 1M tokens
# PRICE_PER_1K_OUTPUT_LLM = 0.0003   # $0.30 per 1M tokens
# PRICE_PER_1K_EMBEDDING_INPUT = 0.000025 # $0.025 per 1M tokens

# Gemini 2.5 Flash-Lite pricing per 1,000 tokens
PRICE_PER_1K_INPUT_LLM = 0.00010      # $0.10 per 1M input tokens
PRICE_PER_1K_OUTPUT_LLM = 0.00040     # $0.40 per 1M output tokens

# Embedding-001 pricing per 1,000 input tokens
PRICE_PER_1K_EMBEDDING_INPUT = 0.00015  # $0.15 per 1M input tokens
# --- API Functions (REAL API FUNCTIONS) ---

# def get_embedding(text, task_type="RETRIEVAL_DOCUMENT"):
#     """Generates an embedding for the given text using a Google embedding model."""
#     try:
#         result = genai.embed_content(
#             model="models/text-embedding-004", # Specify the embedding model
#             content=text,
#             task_type=task_type
#         )
#         return np.array(result['embedding']).astype('float32')
#     except Exception as e:
#         print(f"Error getting embedding: {e}")
#         return np.zeros(768, dtype='float32')
def get_embedding(text, task_type="RETRIEVAL_DOCUMENT"):
    """Safe Gemini 1.5 embedding call with fallback."""
    import numpy as np
    try:
        if not text or len(text.strip()) == 0:
            raise ValueError("Empty text cannot be embedded.")
        result = genai.embed_content(
            model="models/text-embedding-004",
            content=text,
            task_type=task_type
        )
        return np.array(result['embedding'], dtype='float32')
    except Exception as e:
        print(f"❌ Embedding error: {e}")
        return np.zeros(768, dtype='float32')


def call_llm_api(prompt, model_name="gemini-2.5-flash-lite"):#'gemini-1.5-flash-latest'):
    """Calls a Google Gemini LLM with the given prompt."""
    try:
        model = genai.GenerativeModel(model_name)
        response = model.generate_content(prompt)
        return response.text, model # Return model instance for token counting
    except Exception as e:
        print(f"Error calling LLM: {e}")
        return "Error: Could not get response from LLM API.", None


# --- Core Document Processing Functions (All previously provided and fixed) ---

def read_docx_text(path):
    """
    Reads text and extracts potential table-like strings from a .docx document.
    Separates plain text from structured [ [ ] ] list-like tables.
    Also attempts to extract a document title.
    """
    doc = Document(path)
    plain_text_paragraphs = []
    table_strings = []
    document_title = "Unknown Document Title" # Default

    # Attempt to extract the document title from the first few paragraphs
    title_paragraphs = [p.text.strip() for p in doc.paragraphs[:5] if p.text.strip()]
    if title_paragraphs:
        # A heuristic to find a title: often the first or second non-empty paragraph
        # or a very long first paragraph if it's the title
        if len(title_paragraphs[0]) > 50 and "Human Genetics" not in title_paragraphs[0]:
            document_title = title_paragraphs[0]
        elif len(title_paragraphs) > 1 and len(title_paragraphs[1]) > 50 and "Human Genetics" not in title_paragraphs[1]:
            document_title = title_paragraphs[1]
        elif any("Complete mitochondrial genomes" in p for p in title_paragraphs):
            # Fallback to a known title phrase if present
            document_title = "Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages"

    current_table_lines = []
    in_table_parsing_mode = False

    for p in doc.paragraphs:
        text = p.text.strip()
        if not text:
            continue

        # Condition to start or continue table parsing
        if text.startswith("## Table "): # Start of a new table section
            if in_table_parsing_mode and current_table_lines:
                table_strings.append("\n".join(current_table_lines))
            current_table_lines = [text] # Include the "## Table X" line
            in_table_parsing_mode = True
        elif in_table_parsing_mode and (text.startswith("[") or text.startswith('"')):
            # Continue collecting lines if we're in table mode and it looks like table data
            # Table data often starts with '[' for lists, or '"' for quoted strings within lists.
            current_table_lines.append(text)
        else:
            # If not in table mode, or if a line doesn't look like table data,
            # then close the current table (if any) and add the line to plain text.
            if in_table_parsing_mode and current_table_lines:
                table_strings.append("\n".join(current_table_lines))
                current_table_lines = []
            in_table_parsing_mode = False
            plain_text_paragraphs.append(text)

    # After the loop, add any remaining table lines
    if current_table_lines:
        table_strings.append("\n".join(current_table_lines))

    return "\n".join(plain_text_paragraphs), table_strings, document_title

# --- Structured Data Extraction and RAG Functions ---

def parse_literal_python_list(table_str):
    list_match = re.search(r'(\[\s*\[\s*(?:.|\n)*?\s*\]\s*\])', table_str)
    #print("Debug: list_match object (before if check):", list_match)
    if not list_match:
        if "table" in table_str.lower(): # then the table doest have the "]]" at the end
            table_str += "]]"
            list_match = re.search(r'(\[\s*\[\s*(?:.|\n)*?\s*\]\s*\])', table_str)
    if list_match:
        try:
            matched_string = list_match.group(1)
            #print("Debug: Matched string for literal_eval:", matched_string)
            return ast.literal_eval(matched_string)
        except (ValueError, SyntaxError) as e:
            print(f"Error evaluating literal: {e}")
            return []
    return []


_individual_code_parser = re.compile(r'([A-Z0-9]+?)(\d+)$', re.IGNORECASE)
def _parse_individual_code_parts(code_str):
    match = _individual_code_parser.search(code_str)
    if match:
        return match.group(1), match.group(2)
    return None, None


def parse_sample_id_to_population_code(plain_text_content):
    sample_id_map = {}
    contiguous_ranges_data = defaultdict(list)

    #section_start_marker = "The sample identification of each population is as follows:"
    section_start_marker = ["The sample identification of each population is as follows:","## table"]
    
    for s in section_start_marker:
      relevant_text_search = re.search(
          re.escape(s.lower()) + r"\s*(.*?)(?=\n##|\Z)",
          plain_text_content.lower(),
          re.DOTALL
      )
      if relevant_text_search: 
        break
      
    if not relevant_text_search:
        print("Warning: 'Sample ID Population Code' section start marker not found or block empty.")
        return sample_id_map, contiguous_ranges_data

    relevant_text_block = relevant_text_search.group(1).strip()

    # print(f"\nDEBUG_PARSING: --- Start of relevant_text_block (first 500 chars) ---")
    # print(relevant_text_block[:500])
    # print(f"DEBUG_PARSING: --- End of relevant_text_block (last 500 chars) ---")
    # print(relevant_text_block[-500:])
    # print(f"DEBUG_PARSING: Relevant text block length: {len(relevant_text_block)}")

    mapping_pattern = re.compile(
    r'\b([A-Z0-9]+\d+)(?:-([A-Z0-9]+\d+))?\s+([A-Z0-9]+)\b', # Changed the last group
    re.IGNORECASE)

    range_expansion_count = 0
    direct_id_count = 0
    total_matches_found = 0
    for match in mapping_pattern.finditer(relevant_text_block):
        total_matches_found += 1
        id1_full_str, id2_full_str_opt, pop_code = match.groups()

        #print(f"  DEBUG_PARSING: Matched: '{match.group(0)}'")

        pop_code_upper = pop_code.upper()

        id1_prefix, id1_num_str = _parse_individual_code_parts(id1_full_str)
        if id1_prefix is None:
            #print(f"    DEBUG_PARSING: Failed to parse ID1: {id1_full_str}. Skipping this mapping.")
            continue

        if id2_full_str_opt:
            id2_prefix_opt, id2_num_str_opt = _parse_individual_code_parts(id2_full_str_opt)
            if id2_prefix_opt is None:
                #print(f"    DEBUG_PARSING: Failed to parse ID2: {id2_full_str_opt}. Treating {id1_full_str} as single ID1.")
                sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
                direct_id_count += 1
                continue

            #print(f"    DEBUG_PARSING: Comparing prefixes: '{id1_prefix.lower()}' vs '{id2_prefix_opt.lower()}'")
            if id1_prefix.lower() == id2_prefix_opt.lower():
                #print(f"    DEBUG_PARSING: ---> Prefixes MATCH for range expansion! Range: {id1_prefix}{id1_num_str}-{id2_prefix_opt}{id2_num_str_opt}")
                try:
                    start_num = int(id1_num_str)
                    end_num = int(id2_num_str_opt)
                    for num in range(start_num, end_num + 1):
                        sample_id = f"{id1_prefix.upper()}{num}"
                        sample_id_map[sample_id] = pop_code_upper
                        range_expansion_count += 1
                    contiguous_ranges_data[id1_prefix.upper()].append(
                        (start_num, end_num, pop_code_upper)
                    )
                except ValueError:
                    print(f"        DEBUG_PARSING: ValueError in range conversion for {id1_num_str}-{id2_num_str_opt}. Adding endpoints only.")
                    sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
                    sample_id_map[f"{id2_prefix_opt.upper()}{id2_num_str_opt}"] = pop_code_upper
                    direct_id_count += 2
            else:
                #print(f"    DEBUG_PARSING: Prefixes MISMATCH for range: '{id1_prefix}' vs '{id2_prefix_opt}'. Adding endpoints only.")
                sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
                sample_id_map[f"{id2_prefix_opt.upper()}{id2_num_str_opt}"] = pop_code_upper
                direct_id_count += 2
        else:
            sample_id_map[f"{id1_prefix.upper()}{id1_num_str}"] = pop_code_upper
            direct_id_count += 1

    # print(f"DEBUG_PARSING: Total matches found by regex: {total_matches_found}.")
    # print(f"DEBUG_PARSING: Parsed sample IDs: {len(sample_id_map)} total entries.")
    # print(f"DEBUG_PARSING:   (including {range_expansion_count} from range expansion and {direct_id_count} direct ID/endpoint entries).")
    return sample_id_map, contiguous_ranges_data

country_keywords_regional_overrides = {
    "north thailand": "Thailand", "central thailand": "Thailand",
    "northeast thailand": "Thailand", "east myanmar": "Myanmar", "west thailand": "Thailand",
    "central india": "India", "east india": "India", "northeast india": "India",
    "south sibera": "Russia", "siberia": "Russia", "yunnan": "China", #"tibet": "China",
    "sumatra": "Indonesia", "borneo": "Indonesia",
    "northern mindanao": "Philippines", "west malaysia": "Malaysia",
    "mongolia": "China",
    "beijing": "China",
    "north laos": "Laos", "central laos": "Laos",
    "east myanmar": "Myanmar", "west myanmar": "Myanmar"}

# Updated get_country_from_text function
def get_country_from_text(text):
    text_lower = text.lower()

    # 1. Use pycountry for official country names and common aliases
    for country in pycountry.countries:
        # Check full name match first
        if text_lower == country.name.lower():
            return country.name
        
        # Safely check for common_name
        if hasattr(country, 'common_name') and text_lower == country.common_name.lower():
            return country.common_name
            
        # Safely check for official_name
        if hasattr(country, 'official_name') and text_lower == country.official_name.lower():
            return country.official_name

        # Check if country name is part of the text (e.g., 'Thailand' in 'Thailand border')
        if country.name.lower() in text_lower:
            return country.name
            
        # Safely check if common_name is part of the text
        if hasattr(country, 'common_name') and country.common_name.lower() in text_lower:
            return country.common_name
    # 2. Prioritize specific regional overrides
    for keyword, country in country_keywords_regional_overrides.items():
        if keyword in text_lower:
            return country
    # 3. Check for broader regions that you want to map to "unknown" or a specific country
    if "north asia" in text_lower or "southeast asia" in text_lower or "east asia" in text_lower:
        return "unknown"

    return "unknown"

# Get the list of English stop words from NLTK
non_meaningful_pop_names = set(stopwords.words('english'))

def parse_population_code_to_country(plain_text_content, table_strings):
    pop_code_country_map = {}
    pop_code_ethnicity_map = {} # NEW: To store ethnicity for structured lookup
    pop_code_specific_loc_map = {} # NEW: To store specific location for structured lookup

    # Regex for parsing population info in structured lists and general text
    # This pattern captures: (Pop Name/Ethnicity) (Pop Code) (Region/Specific Location) (Country) (Linguistic Family)
    # The 'Pop Name/Ethnicity' (Group 1) is often the ethnicity
    pop_info_pattern = re.compile(
          r'([A-Za-z\s]+?)\s+([A-Z]+\d*)\s+'      # Pop Name (Group 1), Pop Code (Group 2) - Changed \d+ to \d* for codes like 'SH'
          r'([A-Za-z\s\(\)\-,\/]+?)\s+'          # Region/Specific Location (Group 3)
          r'(North+|South+|West+|East+|Thailand|Laos|Cambodia|Myanmar|Philippines|Indonesia|Malaysia|China|India|Taiwan|Vietnam|Russia|Nepal|Japan|South Korea)\b' # Country (Group 4)
          r'(?:.*?([A-Za-z\s\-]+))?\s*'          # Optional Linguistic Family (Group 5), made optional with ?, followed by optional space
          r'(\d+(?:\s+\d+\.?\d*)*)?', # Match all the numbers (Group 6) - made optional
          re.IGNORECASE
      )
    for table_str in table_strings:
        table_data = parse_literal_python_list(table_str)
        if table_data:
            is_list_of_lists = bool(table_data) and isinstance(table_data[0], list)
            if is_list_of_lists:
                for row_idx, row in enumerate(table_data):
                    row_text = " ".join(map(str, row))
                    match = pop_info_pattern.search(row_text)
                    if match:
                        pop_name = match.group(1).strip()
                        pop_code = match.group(2).upper()
                        specific_loc_text = match.group(3).strip()
                        country_text = match.group(4).strip()
                        linguistic_family = match.group(5).strip() if match.group(5) else 'unknown'

                        final_country = get_country_from_text(country_text)
                        if final_country == 'unknown': # Try specific loc text for country if direct country is not found
                            final_country = get_country_from_text(specific_loc_text)

                        if pop_code:
                            pop_code_country_map[pop_code] = final_country

                            # Populate ethnicity map (often Pop Name is ethnicity)
                            pop_code_ethnicity_map[pop_code] = pop_name

                            # Populate specific location map
                            pop_code_specific_loc_map[pop_code] = specific_loc_text # Store as is from text
            else:
                row_text = " ".join(map(str, table_data))   
                match = pop_info_pattern.search(row_text)
                if match:
                    pop_name = match.group(1).strip()
                    pop_code = match.group(2).upper()
                    specific_loc_text = match.group(3).strip()
                    country_text = match.group(4).strip()
                    linguistic_family = match.group(5).strip() if match.group(5) else 'unknown'

                    final_country = get_country_from_text(country_text)
                    if final_country == 'unknown': # Try specific loc text for country if direct country is not found
                        final_country = get_country_from_text(specific_loc_text)

                    if pop_code:
                        pop_code_country_map[pop_code] = final_country

                        # Populate ethnicity map (often Pop Name is ethnicity)
                        pop_code_ethnicity_map[pop_code] = pop_name

                        # Populate specific location map
                        pop_code_specific_loc_map[pop_code] = specific_loc_text # Store as is from text

                        # # Special case refinements for ethnicity/location if more specific rules are known from document:
                        # if pop_name.lower() == "khon mueang": # and specific conditions if needed
                        #     pop_code_ethnicity_map[pop_code] = "Khon Mueang"
                        #     # If Khon Mueang has a specific city/district, add here
                        #     # e.g., if 'Chiang Mai' is directly linked to KM1 in a specific table
                        #     # pop_code_specific_loc_map[pop_code] = "Chiang Mai"
                        # elif pop_name.lower() == "lawa":
                        #      pop_code_ethnicity_map[pop_code] = "Lawa"
                        # # Add similar specific rules for other populations (e.g., Mon for MO1, MO2, MO3)
                        # elif pop_name.lower() == "mon":
                        #     pop_code_ethnicity_map[pop_code] = "Mon"
                        #     # For MO2: "West Thailand (Thailand Myanmar border)" -> no city
                        #     # For MO3: "East Myanmar (Thailand Myanmar border)" -> no city
                        #     # If the doc gives "Bangkok" for MO4, add it here for MO4's actual specific_location.
                        # # etc.

    # Fallback to parsing general plain text content (sentences)
    sentences = data_preprocess.extract_sentences(plain_text_content)
    for s in sentences: # Still focusing on just this one sentence
      # Use re.finditer to get all matches
      matches = pop_info_pattern.finditer(s)
      pop_name, pop_code, specific_loc_text, country_text = "unknown", "unknown", "unknown", "unknown"
      for match in matches:
          if match.group(1):
            pop_name = match.group(1).strip()
          if match.group(2):  
            pop_code = match.group(2).upper()
          if match.group(3):  
            specific_loc_text = match.group(3).strip()
          if match.group(4):  
            country_text = match.group(4).strip()
          # linguistic_family = match.group(5).strip() if match.group(5) else 'unknown' # Already captured by pop_info_pattern

          final_country = get_country_from_text(country_text)
          if final_country == 'unknown':
              final_country = get_country_from_text(specific_loc_text)

          if pop_code.lower() not in non_meaningful_pop_names:
            if final_country.lower() not in non_meaningful_pop_names:
              pop_code_country_map[pop_code] = final_country
            if pop_name.lower() not in non_meaningful_pop_names:  
              pop_code_ethnicity_map[pop_code] = pop_name # Default ethnicity from Pop Name
            if specific_loc_text.lower() not in non_meaningful_pop_names:  
              pop_code_specific_loc_map[pop_code] = specific_loc_text

              # Specific rules for ethnicity/location in plain text:
              if pop_name.lower() == "khon mueang":
                  pop_code_ethnicity_map[pop_code] = "Khon Mueang"
              elif pop_name.lower() == "lawa":
                  pop_code_ethnicity_map[pop_code] = "Lawa"
              elif pop_name.lower() == "mon":
                  pop_code_ethnicity_map[pop_code] = "Mon"
              elif pop_name.lower() == "seak": # Added specific rule for Seak
                  pop_code_ethnicity_map[pop_code] = "Seak"
              elif pop_name.lower() == "nyaw": # Added specific rule for Nyaw
                  pop_code_ethnicity_map[pop_code] = "Nyaw"
              elif pop_name.lower() == "nyahkur": # Added specific rule for Nyahkur
                  pop_code_ethnicity_map[pop_code] = "Nyahkur"
              elif pop_name.lower() == "suay": # Added specific rule for Suay
                  pop_code_ethnicity_map[pop_code] = "Suay"
              elif pop_name.lower() == "soa": # Added specific rule for Soa
                  pop_code_ethnicity_map[pop_code] = "Soa"
              elif pop_name.lower() == "bru": # Added specific rule for Bru
                  pop_code_ethnicity_map[pop_code] = "Bru"
              elif pop_name.lower() == "khamu": # Added specific rule for Khamu
                  pop_code_ethnicity_map[pop_code] = "Khamu"

    return pop_code_country_map, pop_code_ethnicity_map, pop_code_specific_loc_map

def general_parse_population_code_to_country(plain_text_content, table_strings):
    pop_code_country_map = {}
    pop_code_ethnicity_map = {}
    pop_code_specific_loc_map = {}
    sample_id_to_pop_code = {}

    for table_str in table_strings:
        table_data = parse_literal_python_list(table_str)
        if not table_data or not isinstance(table_data[0], list):
            continue

        header_row = [col.lower() for col in table_data[0]]
        header_map = {col: idx for idx, col in enumerate(header_row)}

        # MJ17: Direct PopCode → Country
        if 'id' in header_map and 'country' in header_map:
            for row in table_strings[1:]:
                row = parse_literal_python_list(row)[0]
                if len(row) < len(header_row):
                    continue
                pop_code = str(row[header_map['id']]).strip()
                country = str(row[header_map['country']]).strip()
                province = row[header_map['province']].strip() if 'province' in header_map else 'unknown'
                pop_group = row[header_map['population group / region']].strip() if 'population group / region' in header_map else 'unknown'
                pop_code_country_map[pop_code] = country
                pop_code_specific_loc_map[pop_code] = province
                pop_code_ethnicity_map[pop_code] = pop_group

        # A1YU101 or EBK/KSK: SampleID → PopCode
        elif 'sample id' in header_map and 'population code' in header_map:
            for row in table_strings[1:]:
                row = parse_literal_python_list(row)[0]
                if len(row) < 2:
                    continue
                sample_id = row[header_map['sample id']].strip().upper()
                pop_code = row[header_map['population code']].strip().upper()
                sample_id_to_pop_code[sample_id] = pop_code

        # PopCode → Country (A1YU101/EBK mapping)
        elif 'population code' in header_map and 'country' in header_map:
            for row in table_strings[1:]:
                row = parse_literal_python_list(row)[0]
                if len(row) < 2:
                    continue
                pop_code = row[header_map['population code']].strip().upper()
                country = row[header_map['country']].strip()
                pop_code_country_map[pop_code] = country

    return pop_code_country_map, pop_code_ethnicity_map, pop_code_specific_loc_map, sample_id_to_pop_code

def chunk_text(text, chunk_size=500, overlap=50):
    """Splits text into chunks (by words) with overlap."""
    chunks = []
    words = text.split()
    num_words = len(words)

    start = 0
    while start < num_words:
        end = min(start + chunk_size, num_words)
        chunk = " ".join(words[start:end])
        chunks.append(chunk)

        if end == num_words:
            break
        start += chunk_size - overlap # Move start by (chunk_size - overlap)
    return chunks

def build_vector_index_and_data(doc_path, index_path="faiss_index.bin", chunks_path="document_chunks.json", structured_path="structured_lookup.json"):
    """
    Reads document, builds structured lookup, chunks remaining text, embeds chunks,
    and builds/saves a FAISS index.
    """
    print("Step 1: Reading document and extracting structured data...")
    # plain_text_content, table_strings, document_title = read_docx_text(doc_path) # Get document_title here

    # sample_id_map, contiguous_ranges_data = parse_sample_id_to_population_code(plain_text_content)
    # pop_code_to_country, pop_code_to_ethnicity, pop_code_to_specific_loc = parse_population_code_to_country(plain_text_content, table_strings)

    # master_structured_lookup = {}
    # master_structured_lookup['document_title'] = document_title # Store document title
    # master_structured_lookup['sample_id_map'] = sample_id_map
    # master_structured_lookup['contiguous_ranges'] = dict(contiguous_ranges_data)
    # master_structured_lookup['pop_code_to_country'] = pop_code_to_country
    # master_structured_lookup['pop_code_to_ethnicity'] = pop_code_to_ethnicity # NEW: Store pop_code to ethnicity map
    # master_structured_lookup['pop_code_to_specific_loc'] = pop_code_to_specific_loc # NEW: Store pop_code to specific_loc map


    # # Final consolidation: Use sample_id_map to derive full info for queries
    # final_structured_entries = {}
    # for sample_id, pop_code in master_structured_lookup['sample_id_map'].items():
    #     country = master_structured_lookup['pop_code_to_country'].get(pop_code, 'unknown')
    #     ethnicity = master_structured_lookup['pop_code_to_ethnicity'].get(pop_code, 'unknown') # Retrieve ethnicity
    #     specific_location = master_structured_lookup['pop_code_to_specific_loc'].get(pop_code, 'unknown') # Retrieve specific location

    #     final_structured_entries[sample_id] = {
    #         'population_code': pop_code,
    #         'country': country,
    #         'type': 'modern',
    #         'ethnicity': ethnicity, # Store ethnicity
    #         'specific_location': specific_location # Store specific location
    #     }
    # master_structured_lookup['final_structured_entries'] = final_structured_entries
    plain_text_content, table_strings, document_title = read_docx_text(doc_path)
    pop_code_to_country, pop_code_to_ethnicity, pop_code_to_specific_loc, sample_id_map = general_parse_population_code_to_country(plain_text_content, table_strings)

    final_structured_entries = {}
    if sample_id_map:
        for sample_id, pop_code in sample_id_map.items():
            country = pop_code_to_country.get(pop_code, 'unknown')
            ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
            specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
            final_structured_entries[sample_id] = {
                'population_code': pop_code,
                'country': country,
                'type': 'modern',
                'ethnicity': ethnicity,
                'specific_location': specific_loc
            }
    else:
        for pop_code in pop_code_to_country.keys():
            country = pop_code_to_country.get(pop_code, 'unknown')
            ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
            specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
            final_structured_entries[pop_code] = {
                'population_code': pop_code,
                'country': country,
                'type': 'modern',
                'ethnicity': ethnicity,
                'specific_location': specific_loc
            }
    if not final_structured_entries:
      # traditional way of A1YU101
      sample_id_map, contiguous_ranges_data = parse_sample_id_to_population_code(plain_text_content)
      pop_code_to_country, pop_code_to_ethnicity, pop_code_to_specific_loc = parse_population_code_to_country(plain_text_content, table_strings)
      if sample_id_map:
        for sample_id, pop_code in sample_id_map.items():
            country = pop_code_to_country.get(pop_code, 'unknown')
            ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
            specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
            final_structured_entries[sample_id] = {
                'population_code': pop_code,
                'country': country,
                'type': 'modern',
                'ethnicity': ethnicity,
                'specific_location': specific_loc
            }
      else:
          for pop_code in pop_code_to_country.keys():
              country = pop_code_to_country.get(pop_code, 'unknown')
              ethnicity = pop_code_to_ethnicity.get(pop_code, 'unknown')
              specific_loc = pop_code_to_specific_loc.get(pop_code, 'unknown')
              final_structured_entries[pop_code] = {
                  'population_code': pop_code,
                  'country': country,
                  'type': 'modern',
                  'ethnicity': ethnicity,
                  'specific_location': specific_loc
              }
    
    master_lookup = {
        'document_title': document_title,
        'pop_code_to_country': pop_code_to_country,
        'pop_code_to_ethnicity': pop_code_to_ethnicity,
        'pop_code_to_specific_loc': pop_code_to_specific_loc,
        'sample_id_map': sample_id_map,
        'final_structured_entries': final_structured_entries
    }
    print(f"Structured lookup built with {len(final_structured_entries)} entries in 'final_structured_entries'.")

    with open(structured_path, 'w') as f:
        json.dump(master_lookup, f, indent=4)
    print(f"Structured lookup saved to {structured_path}.")

    print("Step 2: Chunking document for RAG vector index...")
    # replace the chunk here with the all_output from process_inputToken and fallback to this traditional chunk
    clean_text, clean_table = "", ""
    if plain_text_content:
      clean_text = data_preprocess.normalize_for_overlap(plain_text_content)
    if table_strings:
      clean_table = data_preprocess.normalize_for_overlap(". ".join(table_strings))
    all_clean_chunk = clean_text + clean_table
    document_chunks = chunk_text(all_clean_chunk)
    print(f"Document chunked into {len(document_chunks)} chunks.")
    
    print("Step 3: Generating embeddings for chunks (this might take time and cost API calls)...")

    embedding_model_for_chunks = genai.GenerativeModel('models/text-embedding-004')

    chunk_embeddings = []
    for i, chunk in enumerate(document_chunks):
        embedding = get_embedding(chunk, task_type="RETRIEVAL_DOCUMENT")
        if embedding is not None and embedding.shape[0] > 0:
            chunk_embeddings.append(embedding)
        else:
            print(f"Warning: Failed to get valid embedding for chunk {i}. Skipping.")
            chunk_embeddings.append(np.zeros(768, dtype='float32'))

    if not chunk_embeddings:
        raise ValueError("No valid embeddings generated. Check get_embedding function and API.")

    embedding_dimension = chunk_embeddings[0].shape[0]
    index = faiss.IndexFlatL2(embedding_dimension)
    index.add(np.array(chunk_embeddings))

    faiss.write_index(index, index_path)
    with open(chunks_path, "w") as f:
        json.dump(document_chunks, f)

    print(f"FAISS index built and saved to {index_path}.")
    print(f"Document chunks saved to {chunks_path}.")
    return master_lookup, index, document_chunks, all_clean_chunk


def load_rag_assets(index_path="faiss_index.bin", chunks_path="document_chunks.json", structured_path="structured_lookup.json"):
    """Loads pre-built RAG assets (FAISS index, chunks, structured lookup)."""
    print("Loading RAG assets...")
    master_structured_lookup = {}
    if os.path.exists(structured_path):
        with open(structured_path, 'r') as f:
            master_structured_lookup = json.load(f)
        print("Structured lookup loaded.")
    else:
        print("Structured lookup file not found. Rebuilding is likely needed.")

    index = None
    chunks = []
    if os.path.exists(index_path) and os.path.exists(chunks_path):
        try:
            index = faiss.read_index(index_path)
            with open(chunks_path, "r") as f:
                chunks = json.load(f)
            print("FAISS index and chunks loaded.")
        except Exception as e:
            print(f"Error loading FAISS index or chunks: {e}. Will rebuild.")
            index = None
            chunks = []
    else:
        print("FAISS index or chunks files not found.")

    return master_structured_lookup, index, chunks
# Helper function for query_document_info
def exactInContext(text, keyword):
# try keyword_prfix
  # code_pattern = re.compile(r'([A-Z0-9]+?)(\d+)$', re.IGNORECASE)
  # # Attempt to parse the keyword into its prefix and numerical part using re.search
  # keyword_match = code_pattern.search(keyword)
  # keyword_prefix = None
  # keyword_num = None
  # if keyword_match:
  #     keyword_prefix = keyword_match.group(1).lower()
  #     keyword_num = int(keyword_match.group(2))
  text = text.lower()
  idx = text.find(keyword.lower())
  if idx == -1:
    # if keyword_prefix:
    #   idx = text.find(keyword_prefix)
    # if idx == -1:
    #   return False
    return False
  return True
def chooseContextLLM(contexts, kw):
  # if kw in context
  for con in contexts:
    context = contexts[con]
    if context:
      if exactInContext(context, kw):
        return con, context    
  #if cannot find anything related to kw in context, return all output
  if contexts["all_output"]:
    return "all_output", contexts["all_output"]
  else:
    # if all_output not exist
    # look of chunk and still not exist return document chunk
    if contexts["chunk"]: return "chunk", contexts["chunk"]
    elif contexts["document_chunk"]:  return "document_chunk", contexts["document_chunk"]
    else: return None, None  
def clean_llm_output(llm_response_text, output_format_str):
    results = []
    lines = llm_response_text.strip().split('\n')
    output_country, output_type, output_ethnicity, output_specific_location = [],[],[],[]
    for line in lines:
        extracted_country, extracted_type, extracted_ethnicity, extracted_specific_location = "unknown", "unknown", "unknown", "unknown"
        line = line.strip()
        if output_format_str == "ethnicity, specific_location/unknown": # Targeted RAG output
            parsed_output = re.search(r'^\s*([^,]+?),\s*(.+?)\s*$', llm_response_text)
            if parsed_output:
                extracted_ethnicity = parsed_output.group(1).strip()
                extracted_specific_location = parsed_output.group(2).strip()
            else:
                print("  DEBUG: LLM did not follow expected 2-field format for targeted RAG. Defaulting to unknown for ethnicity/specific_location.")
                extracted_ethnicity = 'unknown'
                extracted_specific_location = 'unknown'
        elif output_format_str == "modern/ancient/unknown, ethnicity, specific_location/unknown":
          parsed_output = re.search(r'^\s*([^,]+?),\s*([^,]+?),\s*(.+?)\s*$', llm_response_text)
          if parsed_output:
              extracted_type = parsed_output.group(1).strip()
              extracted_ethnicity = parsed_output.group(2).strip()
              extracted_specific_location = parsed_output.group(3).strip()
          else:
              # Fallback: check if only 2 fields
              parsed_output_2_fields = re.search(r'^\s*([^,]+?),\s*([^,]+?)\s*$', llm_response_text)
              if parsed_output_2_fields:
                  extracted_type = parsed_output_2_fields.group(1).strip()
                  extracted_ethnicity = parsed_output_2_fields.group(2).strip()
                  extracted_specific_location = 'unknown'
              else:
                  # even simpler fallback: 1 field only
                  parsed_output_1_field = re.search(r'^\s*([^,]+?)\s*$', llm_response_text)
                  if parsed_output_1_field:
                      extracted_type = parsed_output_1_field.group(1).strip()
                      extracted_ethnicity = 'unknown'
                      extracted_specific_location = 'unknown'
                  else:
                      print("  DEBUG: LLM did not follow any expected simplified format. Attempting verbose parsing fallback.")
                      type_match_fallback = re.search(r'Type:\s*([A-Za-z\s-]+)', llm_response_text)
                      extracted_type = type_match_fallback.group(1).strip() if type_match_fallback else 'unknown'
                      extracted_ethnicity = 'unknown'
                      extracted_specific_location = 'unknown'
        else:
          parsed_output = re.search(r'^\s*([^,]+?),\s*([^,]+?),\s*([^,]+?),\s*(.+?)\s*$', line)
          if parsed_output:
              extracted_country = parsed_output.group(1).strip()
              extracted_type = parsed_output.group(2).strip()
              extracted_ethnicity = parsed_output.group(3).strip()
              extracted_specific_location = parsed_output.group(4).strip()
          else:
              print(f"  DEBUG: Line did not follow expected 4-field format: {line}")
              parsed_output_2_fields = re.search(r'^\s*([^,]+?),\s*([^,]+?)\s*$', line)
              if parsed_output_2_fields:
                  extracted_country = parsed_output_2_fields.group(1).strip()
                  extracted_type = parsed_output_2_fields.group(2).strip()
                  extracted_ethnicity = 'unknown'
                  extracted_specific_location = 'unknown'
              else:
                  print(f"  DEBUG: Fallback to verbose-style parsing: {line}")
                  country_match_fallback = re.search(r'Country:\s*([A-Za-z\s-]+)', line)
                  type_match_fallback = re.search(r'Type:\s*([A-Za-z\s-]+)', line)
                  extracted_country = country_match_fallback.group(1).strip() if country_match_fallback else 'unknown'
                  extracted_type = type_match_fallback.group(1).strip() if type_match_fallback else 'unknown'
                  extracted_ethnicity = 'unknown'
                  extracted_specific_location = 'unknown'

        results.append({
            "country": extracted_country,
            "type": extracted_type,
            "ethnicity": extracted_ethnicity,
            "specific_location": extracted_specific_location
            #"country_explain":extracted_country_explain,
            #"type_explain": extracted_type_explain
        })
    # if more than 2 results
    if output_format_str == "ethnicity, specific_location/unknown":
      for result in results:
        if result["ethnicity"] not in output_ethnicity:
          output_ethnicity.append(result["ethnicity"])
        if result["specific_location"] not in output_specific_location:  
          output_specific_location.append(result["specific_location"])
      return " or ".join(output_ethnicity), " or ".join(output_specific_location)     
    elif output_format_str == "modern/ancient/unknown, ethnicity, specific_location/unknown":
      for result in results:
        if result["type"] not in output_type:
          output_type.append(result["type"])
        if result["ethnicity"] not in output_ethnicity:
          output_ethnicity.append(result["ethnicity"])
        if result["specific_location"] not in output_specific_location:  
          output_specific_location.append(result["specific_location"])

      return " or ".join(output_type)," or ".join(output_ethnicity), " or ".join(output_specific_location)    
    else:
      for result in results:
        if result["country"] not in output_country:
          output_country.append(result["country"])
        if result["type"] not in output_type:
          output_type.append(result["type"])
        if result["ethnicity"] not in output_ethnicity:
          output_ethnicity.append(result["ethnicity"])
        if result["specific_location"] not in output_specific_location:  
          output_specific_location.append(result["specific_location"])
      return " or ".join(output_country)," or ".join(output_type)," or ".join(output_ethnicity), " or ".join(output_specific_location)           

# def parse_multi_sample_llm_output(raw_response: str, output_format_str):
#     """
#     Parse LLM output with possibly multiple metadata lines + shared explanations.
#     """
#     lines = [line.strip() for line in raw_response.strip().splitlines() if line.strip()]
#     metadata_list = []
#     explanation_lines = []
#     if output_format_str == "country_name, modern/ancient/unknown":
#         parts = [x.strip() for x in lines[0].split(",")]
#         if len(parts)==2:
#           metadata_list.append({
#               "country": parts[0],
#               "sample_type": parts[1]#,
#               #"ethnicity": parts[2],
#               #"location": parts[3]
#           })
#         if 1<len(lines):
#           line = lines[1]
#           if "\n" in line:  line = line.split("\n")
#           if ". " in line: line = line.split(". ")
#           if isinstance(line,str): line = [line]
#           explanation_lines += line
#     elif output_format_str == "modern/ancient/unknown":
#       metadata_list.append({
#           "country": "unknown",
#           "sample_type": lines[0]#,
#           #"ethnicity": parts[2],
#           #"location": parts[3]
#       })
#       explanation_lines.append(lines[1])

#     # Assign explanations (optional) to each sample — same explanation reused
#     for md in metadata_list:
#         md["country_explanation"] = None
#         md["sample_type_explanation"] = None

#         if md["country"].lower() != "unknown" and len(explanation_lines) >= 1:
#             md["country_explanation"] = explanation_lines[0]

#         if md["sample_type"].lower() != "unknown":
#             if len(explanation_lines) >= 2:
#                 md["sample_type_explanation"] = explanation_lines[1]
#             elif len(explanation_lines) == 1 and md["country"].lower() == "unknown":
#                 md["sample_type_explanation"] = explanation_lines[0]
#             elif len(explanation_lines) == 1:
#                 md["sample_type_explanation"] = explanation_lines[0]
#     return metadata_list

def parse_multi_sample_llm_output(raw_response: str, output_format_str):
    """
    Parse LLM output with possibly multiple metadata lines + shared explanations.
    """
    metadata_list = {}
    explanation_lines = []
    output_answers = raw_response.split("\n")[0].split(", ")
    explanation_lines =  [x for x in raw_response.split("\n")[1:] if x.strip()]
    print("raw explanation line which split by new line: ", explanation_lines)
    if len(explanation_lines) == 1:
        if len(explanation_lines[0].split(". ")) > len(explanation_lines):
          explanation_lines =  [x for x in explanation_lines[0].split(". ") if x.strip()]
          print("explain line split by dot: ", explanation_lines)  
    output_formats = output_format_str.split(", ")
    explain = ""
    # assign output format to its output answer and explanation
    if output_format_str:
      outputs = output_format_str.split(", ")
      for o in range(len(outputs)):
        output = outputs[o]
        metadata_list[output] = {"answer":"",
                                  output+"_explanation":""}   
        # assign output answers
        if o < len(output_answers):
          # check if output_format unexpectedly in the answer such as:  
          #country_name: Europe, modern/ancient: modern
          try: 
            if ": " in output_answers[o]:
              output_answers[o] = output_answers[o].split(": ")[1]
          except:
            pass    
          # Europe, modern  
          metadata_list[output]["answer"] = output_answers[o]
          if "unknown" in metadata_list[output]["answer"].lower():
            metadata_list[output]["answer"] = "unknown"
        else:
          metadata_list[output]["answer"] = "unknown"
        # assign explanations
        if metadata_list[output]["answer"] != "unknown":
          if explanation_lines:
            explain = explanation_lines.pop(0)
          metadata_list[output][output+"_explanation"] = explain
        else:  
          metadata_list[output][output+"_explanation"] = "unknown"  
    return metadata_list

def merge_metadata_outputs(metadata_list):
    """
    Merge a list of metadata dicts into one, combining differing values with 'or'.
    Assumes all dicts have the same keys.
    """
    if not metadata_list:
        return {}

    merged = {}
    keys = metadata_list[0].keys()

    for key in keys:
        values = [md[key] for md in metadata_list if key in md]
        unique_values = list(dict.fromkeys(values))  # preserve order, remove dupes
        if "unknown" in unique_values:
          unique_values.pop(unique_values.index("unknown"))
        if len(unique_values) == 1:
            merged[key] = unique_values[0]
        else:
            merged[key] = " or ".join(unique_values)

    return merged


def query_document_info(query_word, alternative_query_word, metadata, master_structured_lookup, faiss_index, document_chunks, llm_api_function, chunk=None, all_output=None, model_ai=None):
    """
    Queries the document using a hybrid approach:
    1. Local structured lookup (fast, cheap, accurate for known patterns).
    2. RAG with semantic search and LLM (general, flexible, cost-optimized).
    """
    if model_ai:
      if model_ai == "gemini-1.5-flash-latest":
        genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
        PRICE_PER_1K_INPUT_LLM = 0.000075  # $0.075 per 1M tokens
        PRICE_PER_1K_OUTPUT_LLM = 0.0003   # $0.30 per 1M tokens
        PRICE_PER_1K_EMBEDDING_INPUT = 0.000025 # $0.025 per 1M tokens
        global_llm_model_for_counting_tokens = genai.GenerativeModel("gemini-1.5-flash-latest")#('gemini-1.5-flash-latest')
    else:
      genai.configure(api_key=os.getenv("GOOGLE_API_KEY_BACKUP"))    
      # Gemini 2.5 Flash-Lite pricing per 1,000 tokens
      PRICE_PER_1K_INPUT_LLM = 0.00010      # $0.10 per 1M input tokens
      PRICE_PER_1K_OUTPUT_LLM = 0.00040     # $0.40 per 1M output tokens

      # Embedding-001 pricing per 1,000 input tokens
      PRICE_PER_1K_EMBEDDING_INPUT = 0.00015  # $0.15 per 1M input tokens
      global_llm_model_for_counting_tokens = genai.GenerativeModel("gemini-2.5-flash-lite")#('gemini-1.5-flash-latest')
    
    if metadata:
      extracted_country, extracted_specific_location, extracted_ethnicity, extracted_type = metadata["country"], metadata["specific_location"], metadata["ethnicity"], metadata["sample_type"]
      extracted_col_date, extracted_iso, extracted_title, extracted_features = metadata["collection_date"], metadata["isolate"], metadata["title"], metadata["all_features"]
    else:
      extracted_country, extracted_specific_location, extracted_ethnicity, extracted_type = "unknown", "unknown", "unknown", "unknown"
      extracted_col_date, extracted_iso, extracted_title = "unknown", "unknown", "unknown"
    # --- NEW: Pre-process alternative_query_word to remove '.X' suffix if present ---
    if alternative_query_word:
        alternative_query_word_cleaned = alternative_query_word.split('.')[0]
    else:
        alternative_query_word_cleaned = alternative_query_word
    country_explanation, sample_type_explanation = None, None

    # Use the consolidated final_structured_entries for direct lookup
    final_structured_entries = master_structured_lookup.get('final_structured_entries', {})
    document_title = master_structured_lookup.get('document_title', 'Unknown Document Title') # Retrieve document title

    # Default values for all extracted fields. These will be updated.
    method_used = 'unknown' # Will be updated based on the method that yields a result
    population_code_from_sl = 'unknown' # To pass to RAG prompt if available
    total_query_cost = 0
    # Attempt 1: Try primary query_word (e.g., isolate name) with structured lookup
    try: 
        print("try attempt 1 in model query")
        structured_info = final_structured_entries.get(query_word.upper())
        if structured_info:
            if extracted_country == 'unknown':
              extracted_country = structured_info['country']
            if extracted_type == 'unknown':
              extracted_type = structured_info['type']
              
            # if extracted_ethnicity == 'unknown':
            #   extracted_ethnicity = structured_info.get('ethnicity', 'unknown') # Get ethnicity from structured lookup
            # if extracted_specific_location == 'unknown':
            #   extracted_specific_location = structured_info.get('specific_location', 'unknown') # Get specific_location from structured lookup
            population_code_from_sl = structured_info['population_code']
            method_used = "structured_lookup_direct"
            print(f"'{query_word}' found in structured lookup (direct match).")
    except:
        print("pass attempt 1 in model query")
        pass 
    # Attempt 2: Try primary query_word with heuristic range lookup if direct fails (only if not already resolved)
    try:
        print("try attempt 2 in model query")
        if method_used == 'unknown':
            query_prefix, query_num_str = _parse_individual_code_parts(query_word)
            if query_prefix is not None and query_num_str is not None:
                try: query_num = int(query_num_str)
                except ValueError: query_num = None
                if query_num is not None:
                    query_prefix_upper = query_prefix.upper()
                    contiguous_ranges = master_structured_lookup.get('contiguous_ranges', defaultdict(list))
                    pop_code_to_country = master_structured_lookup.get('pop_code_to_country', {})
                    pop_code_to_ethnicity = master_structured_lookup.get('pop_code_to_ethnicity', {})
                    pop_code_to_specific_loc = master_structured_lookup.get('pop_code_to_specific_loc', {})
    
                    if query_prefix_upper in contiguous_ranges:
                        for start_num, end_num, pop_code_for_range in contiguous_ranges[query_prefix_upper]:
                            if start_num <= query_num <= end_num:
                                country_from_heuristic = pop_code_to_country.get(pop_code_for_range, 'unknown')
                                if country_from_heuristic != 'unknown':
                                    if extracted_country == 'unknown':
                                      extracted_country = country_from_heuristic
                                    if extracted_type == 'unknown':
                                      extracted_type = 'modern'
                                    # if extracted_ethnicity == 'unknown':
                                    #   extracted_ethnicity = pop_code_to_ethnicity.get(pop_code_for_range, 'unknown')
                                    # if extracted_specific_location == 'unknown':
                                    #   extracted_specific_location = pop_code_to_specific_loc.get(pop_code_for_range, 'unknown')
                                    population_code_from_sl = pop_code_for_range
                                    method_used = "structured_lookup_heuristic_range_match"
                                    print(f"'{query_word}' not direct. Heuristic: Falls within range {query_prefix_upper}{start_num}-{query_prefix_upper}{end_num}.")
                                    break
                                else:
                                    print(f"'{query_word}' heuristic match found, but country unknown. Will fall to RAG below.")
    except:
        print("pass attempt 2 in model query")                              
        pass
    # Attempt 3: If primary query_word failed all structured lookups, try alternative_query_word (cleaned)
    try:
        print("try attempt 3 in model query")
        if method_used == 'unknown' and alternative_query_word_cleaned and alternative_query_word_cleaned != query_word:
            print(f"'{query_word}' not found in structured (or heuristic). Trying alternative '{alternative_query_word_cleaned}'.")
    
            # Try direct lookup for alternative word
            structured_info_alt = final_structured_entries.get(alternative_query_word_cleaned.upper())
            if structured_info_alt:
              if extracted_country == 'unknown':
                extracted_country = structured_info_alt['country']
              if extracted_type == 'unknown':
                extracted_type = structured_info_alt['type']
              # if extracted_ethnicity == 'unknown':
              #   extracted_ethnicity = structured_info_alt.get('ethnicity', 'unknown')
              # if extracted_specific_location == 'unknown':
              #   extracted_specific_location = structured_info_alt.get('specific_location', 'unknown')
              population_code_from_sl = structured_info_alt['population_code']
              method_used = "structured_lookup_alt_direct"
              print(f"Alternative '{alternative_query_word_cleaned}' found in structured lookup (direct match).")
            else:
                # Try heuristic lookup for alternative word
                alt_prefix, alt_num_str = _parse_individual_code_parts(alternative_query_word_cleaned)
                if alt_prefix is not None and alt_num_str is not None:
                    try: alt_num = int(alt_num_str)
                    except ValueError: alt_num = None
                    if alt_num is not None:
                        alt_prefix_upper = alt_prefix.upper()
                        contiguous_ranges = master_structured_lookup.get('contiguous_ranges', defaultdict(list))
                        pop_code_to_country = master_structured_lookup.get('pop_code_to_country', {})
                        pop_code_to_ethnicity = master_structured_lookup.get('pop_code_to_ethnicity', {})
                        pop_code_to_specific_loc = master_structured_lookup.get('pop_code_to_specific_loc', {})
                        if alt_prefix_upper in contiguous_ranges:
                            for start_num, end_num, pop_code_for_range in contiguous_ranges[alt_prefix_upper]:
                                if start_num <= alt_num <= end_num:
                                    country_from_heuristic_alt = pop_code_to_country.get(pop_code_for_range, 'unknown')
                                    if country_from_heuristic_alt != 'unknown':
                                      if extracted_country == 'unknown':
                                        extracted_country = country_from_heuristic_alt
                                      if extracted_type == 'unknown':
                                        extracted_type = 'modern'
                                      # if extracted_ethnicity == 'unknown':
                                      #   extracted_ethnicity = pop_code_to_ethnicity.get(pop_code_for_range, 'unknown')
                                      # if extracted_specific_location == 'unknown':
                                      #   extracted_specific_location = pop_code_to_specific_loc.get(pop_code_for_range, 'unknown')
                                      population_code_from_sl = pop_code_for_range
                                      method_used = "structured_lookup_alt_heuristic_range_match"
                                      break
                                    else:
                                        print(f"Alternative '{alternative_query_word_cleaned}' heuristic match found, but country unknown. Will fall to RAG below.")
    except:
        print("pass attempt 3 in model query")
        pass
    # use the context_for_llm to detect present_ancient before using llm model
    # retrieved_chunks_text = []
    # if document_chunks:
    #   for idx in range(len(document_chunks)):
    #           retrieved_chunks_text.append(document_chunks[idx])
    # context_for_llm = ""
    # all_context = "\n".join(retrieved_chunks_text) # 
    # listOfcontexts = {"chunk": chunk, 
    #         "all_output": all_output,
    #         "document_chunk": all_context}
    # label, context_for_llm = chooseContextLLM(listOfcontexts, query_word) 
    # if not context_for_llm:
    #   label, context_for_llm = chooseContextLLM(listOfcontexts, alternative_query_word_cleaned)
    #   if not context_for_llm:
    #     context_for_llm = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + extracted_features
    # if context_for_llm:
    #   extracted_type, explain = mtdna_classifier.detect_ancient_flag(context_for_llm)
    #   extracted_type = extracted_type.lower()
    #   sample_type_explanation = explain
    # 5. Execute RAG if needed (either full RAG or targeted RAG for missing fields)

    # Determine if a RAG call is necessary
    # run_rag = (extracted_country == 'unknown' or extracted_type == 'unknown')# or \
    #            #extracted_ethnicity == 'unknown' or extracted_specific_location == 'unknown')
    run_rag = True
    if run_rag:
        print("try run rag")
        # Determine the phrase for LLM query
        rag_query_phrase = f"'{query_word}'"
        if alternative_query_word_cleaned and alternative_query_word_cleaned != query_word:
            rag_query_phrase += f" or its alternative word '{alternative_query_word_cleaned}'"

        # Construct a more specific semantic query phrase for embedding if structured info is available
        semantic_query_for_embedding = rag_query_phrase # Default
        # if extracted_country != 'unknown': # If country is known from structured lookup (for targeted RAG)
        #     if population_code_from_sl != 'unknown':
        #         semantic_query_for_embedding = f"ethnicity and specific location for {query_word} population {population_code_from_sl} in {extracted_country}"
        #     else: # If pop_code not found in structured, still use country hint
        #         semantic_query_for_embedding = f"ethnicity and specific location for {query_word} in {extracted_country}"
        # print(f"  DEBUG: Semantic query for embedding: '{semantic_query_for_embedding}'")


        # Determine fields to ask LLM for and output format based on what's known/needed
        prompt_instruction_prefix = ""
        output_format_str = ""

        # Determine if it's a full RAG or targeted RAG scenario based on what's already extracted
        is_full_rag_scenario = True#(extracted_country == 'unknown')

        if is_full_rag_scenario: # Full RAG scenario
            output_format_str = "country_name, modern/ancient/unknown"#, ethnicity, specific_location/unknown"
            method_used = "rag_llm"
            print(f"Proceeding to FULL RAG for {rag_query_phrase}.")
        # else: # Targeted RAG scenario (country/type already known, need ethnicity/specific_location)
        #     if extracted_type == "unknown":
        #         prompt_instruction_prefix = (
        #             f"I already know the country is {extracted_country}. "
        #             f"{f'The population code is {population_code_from_sl}. ' if population_code_from_sl != 'unknown' else ''}"
        #         )
        #         #output_format_str = "modern/ancient/unknown, ethnicity, specific_location/unknown"
        #         output_format_str = "modern/ancient/unknown"
        #     # else:
        #     #     prompt_instruction_prefix = (
        #     #         f"I already know the country is {extracted_country} and the sample type is {extracted_type}. "
        #     #         f"{f'The population code is {population_code_from_sl}. ' if population_code_from_sl != 'unknown' else ''}"
        #     #     )
        #     #     output_format_str = "ethnicity, specific_location/unknown"

        #     method_used = "hybrid_sl_rag"
        #     print(f"Proceeding to TARGETED RAG for {rag_query_phrase}.")


        # Calculate embedding cost for the primary query word
        current_embedding_cost = 0
        try:
            query_embedding_vector = get_embedding(semantic_query_for_embedding, task_type="RETRIEVAL_QUERY")
            query_embedding_tokens = global_llm_model_for_counting_tokens.count_tokens(semantic_query_for_embedding).total_tokens
            current_embedding_cost += (query_embedding_tokens / 1000) * PRICE_PER_1K_EMBEDDING_INPUT
            print(f"  DEBUG: Query embedding tokens (for '{semantic_query_for_embedding}'): {query_embedding_tokens}, cost: ${current_embedding_cost:.6f}")

            if alternative_query_word_cleaned and alternative_query_word_cleaned != query_word:
                alt_embedding_vector = get_embedding(alternative_query_word_cleaned, task_type="RETRIEVAL_QUERY")
                alt_embedding_tokens = global_llm_model_for_counting_tokens.count_tokens(alternative_query_word_cleaned).total_tokens
                current_embedding_cost += (alt_embedding_tokens / 1000) * PRICE_PER_1K_EMBEDDING_INPUT
                print(f"  DEBUG: Alternative query ('{alternative_query_word_cleaned}') embedding tokens: {alt_embedding_tokens}, cost: ${current_embedding_cost:.6f}")

        except Exception as e:
            print(f"Error getting query embedding for RAG: {e}")
            return extracted_country, extracted_type, "embedding_failed", extracted_ethnicity, extracted_specific_location, total_query_cost

        if query_embedding_vector is None or query_embedding_vector.shape[0] == 0:
            return extracted_country, extracted_type, "embedding_failed", extracted_ethnicity, extracted_specific_location, total_query_cost

        D, I = faiss_index.search(np.array([query_embedding_vector]), 4)

        retrieved_chunks_text = []
        for idx in I[0]:
            if 0 <= idx < len(document_chunks):
                retrieved_chunks_text.append(document_chunks[idx])

        context_for_llm = ""
        
        all_context = "\n".join(retrieved_chunks_text) # 
        listOfcontexts = {"chunk": chunk, 
            "all_output": all_output,
            "document_chunk": all_context}
        label, context_for_llm = chooseContextLLM(listOfcontexts, query_word) 
        if not context_for_llm:
          label, context_for_llm = chooseContextLLM(listOfcontexts, alternative_query_word_cleaned)
          if not context_for_llm:
            context_for_llm = "Collection_date: " + col_date +". Isolate: " + iso + ". Title: " + title + ". Features: " + extracted_features
        #print("context for llm: ", label)    
        # prompt_for_llm = (
        #     f"{prompt_instruction_prefix}"
        #     f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} or the mitochondrial DNA sample in general if these specific identifiers are not explicitly found. "
        #     f"Identify its primary associated country/geographic location. "
        #     f"Also, determine if the genetic sample or individual mentioned is from a 'modern' (present-day living individual) "
        #     f"or 'ancient' (e.g., prehistoric remains, archaeological sample) source. "
        #     f"If the text does not mention whether the sample is ancient or modern, assume the sample is modern unless otherwise explicitly described as ancient or archaeological. "
        #     f"Additionally, extract its ethnicity and a more specific location (city/district level) within the predicted country. "
        #     f"If any information is not explicitly present in the provided text snippets, state 'unknown' for that specific piece of information. "
        #     f"Provide only the country, sample type, ethnicity, and specific location, do not add extra explanations.\n\n"
        #     f"Text Snippets:\n{context_for_llm}\n\n"
        #     f"Output Format: {output_format_str}"
        # )
        if len(context_for_llm) > 1000*1000:
          context_for_llm = context_for_llm[:900000]

        # fix the prompt better:
        # firstly clarify more by saying which type of organism, prioritize homo sapiens
        features = metadata["all_features"]
        organism = "general"
        if features != "unknown":
          if "organism" in features:
            try:
              organism = features.split("organism: ")[1].split("\n")[0]  
            except:
              organism = features.replace("\n","; ")  
        explain_list = "country or sample type (modern/ancient)" #or ethnicity or specific location (province/city)"    
        
#         prompt_for_llm = (
#     f"{prompt_instruction_prefix}"
#     f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} or the mitochondrial DNA sample in general if these specific identifiers are not explicitly found. "
#     f"Identify its primary associated country/geographic location. "
#     f"Also, determine if the genetic sample or individual mentioned is from a 'modern' (present-day living individual) "
#     f"or 'ancient' (e.g., prehistoric remains, archaeological sample) source. "
#     f"If the text does not mention whether the sample is ancient or modern, assume the sample is modern unless otherwise explicitly described as ancient or archaeological. "
#     f"Provide only {output_format_str}. "
#     f"If any information is not explicitly present in the provided text snippets, state 'unknown' for that specific piece of information. "
#     f"If the country or sample type (modern/ancient) is not 'unknown', write 1 sentence after the output explaining how you inferred it from the text (one sentence for each)."
#     f"\n\nText Snippets:\n{context_for_llm}\n\n"
#     f"Output Format: {output_format_str}"
# )
        
#         prompt_for_llm = (
#     f"{prompt_instruction_prefix}"
#     f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} or the mitochondrial DNA sample in {organism} if these specific identifiers are not explicitly found. "
#     f"Identify its primary associated country/geographic location. "
#     f"Also, determine if the genetic sample or individual mentioned is from a 'modern' (present-day living individual) "
#     f"or 'ancient' (e.g., prehistoric remains, archaeological sample) source. "
#     f"If the text does not mention whether the sample is ancient or modern, assume the sample is modern unless otherwise explicitly described as ancient or archaeological. "
#     f"Provide only {output_format_str}. "
#     f"If any information is not explicitly present in the provided text snippets, state 'unknown' for that specific piece of information. "
#     f"If the {explain_list} is not 'unknown', write 1 sentence after the output explaining how you inferred it from the text (one sentence for each)."
#     f"\n\nText Snippets:\n{context_for_llm}\n\n"
#     f"Output Format: {output_format_str}"
# )
#         prompt_for_llm = (
#     f"{prompt_instruction_prefix}"
#     f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} "
#     f"or the mitochondrial DNA sample in {organism} if these identifiers are not explicitly found. "
#     f"Identify its **primary associated geographic location**, preferring the most specific available: "
#     f"first try to determine the exact country; if no country is explicitly mentioned, then provide "
#     f"the next most specific region, continent, island, or other clear geographic area mentioned. "
#     f"If no geographic clues at all are present, state 'unknown' for location. "
#     f"Also, determine if the genetic sample is from a 'modern' (present-day living individual) "
#     f"or 'ancient' (prehistoric/archaeological) source. "
#     f"If the text does not specify ancient or archaeological context, assume 'modern'. "
#     f"Provide only {output_format_str}. "
#     f"If any information is not explicitly present, use the fallback rules above before defaulting to 'unknown'. "
#     f"For each non-'unknown' field in {explain_list}, write one sentence explaining how it was inferred from the text (one sentence for each)."
#     f"\n\nText Snippets:\n{context_for_llm}\n\n"
#     f"Output Format: {output_format_str}"
# )
        prompt_for_llm = (
    f"{prompt_instruction_prefix}"
    f"Given the following text snippets, analyze the entity/concept {rag_query_phrase} "
    f"or the mitochondrial DNA sample in {organism} if these identifiers are not explicitly found. "
    f"Identify its **primary associated geographic location**, preferring the most specific available: "
    f"first try to determine the exact country; if no country is explicitly mentioned, then provide "
    f"the next most specific region, continent, island, or other clear geographic area mentioned. "
    f"If no geographic clues at all are present, state 'unknown' for location. "
    f"Also, determine if the genetic sample is from a 'modern' (present-day living individual) "
    f"or 'ancient' (prehistoric/archaeological) source. "
    f"If the text does not specify ancient or archaeological context, assume 'modern'. "
    f"Provide only {output_format_str}. "
    f"If any information is not explicitly present, use the fallback rules above before defaulting to 'unknown'. "
    f"For each non-'unknown' field in {explain_list}, write one sentence explaining how it was inferred from the text "
    f"(one sentence for each). "
    f"Format your answer so that:\n"
    f"1. The **first line** contains only the {output_format_str} answer.\n"
    f"2. The **second line onward** contains the explanations.\n"
    f"\nText Snippets:\n{context_for_llm}\n\n"
    f"Output Format Example:\nChina, modern, Daur, Heilongjiang province.\n"
    f"The text explicitly states \"chinese Daur ethnic group in Heilongjiang province\", indicating the country, "
    f"the ethnicity, and the specific province. The study is published in a journal, implying research on living "
    f"individuals, hence modern."
)

        if model_ai:
          print("back up to ", model_ai)
          llm_response_text, model_instance = call_llm_api(prompt_for_llm, model=model_ai)
        else:
          print("still 2.5 flash gemini")
          llm_response_text, model_instance = call_llm_api(prompt_for_llm)
        print("\n--- DEBUG INFO FOR RAG ---")
        print("Retrieved Context Sent to LLM (first 500 chars):")
        print(context_for_llm[:500] + "..." if len(context_for_llm) > 500 else context_for_llm)
        print("\nRaw LLM Response:")
        print(llm_response_text)
        print("--- END DEBUG INFO ---")

        llm_cost = 0
        if model_instance:
            try:
                input_llm_tokens = global_llm_model_for_counting_tokens.count_tokens(prompt_for_llm).total_tokens
                output_llm_tokens = global_llm_model_for_counting_tokens.count_tokens(llm_response_text).total_tokens
                print(f"  DEBUG: LLM Input tokens: {input_llm_tokens}")
                print(f"  DEBUG: LLM Output tokens: {output_llm_tokens}")
                llm_cost = (input_llm_tokens / 1000) * PRICE_PER_1K_INPUT_LLM + \
                           (output_llm_tokens / 1000) * PRICE_PER_1K_OUTPUT_LLM
                print(f"  DEBUG: Estimated LLM cost: ${llm_cost:.6f}")
            except Exception as e:
                print(f"  DEBUG: Error counting LLM tokens: {e}")
                llm_cost = 0

        total_query_cost += current_embedding_cost + llm_cost
        print(f"  DEBUG: Total estimated cost for this RAG query: ${total_query_cost:.6f}")
        # Parse the LLM's response based on the Output Format actually used
        # if output_format_str == "ethnicity, specific_location/unknown": # Targeted RAG output
        #     extracted_ethnicity,extracted_specific_location = clean_llm_output(llm_response_text, output_format_str)
        # elif output_format_str == "modern/ancient/unknown, ethnicity, specific_location/unknown":
        #     extracted_type, extracted_ethnicity,extracted_specific_location=clean_llm_output(llm_response_text, output_format_str) 
        # else: # Full RAG output (country, type, ethnicity, specific_location)
        #     extracted_country,extracted_type, extracted_ethnicity,extracted_specific_location=clean_llm_output(llm_response_text, output_format_str) 
        metadata_list = parse_multi_sample_llm_output(llm_response_text, output_format_str)
        # merge_metadata = merge_metadata_outputs(metadata_list)
        # if output_format_str == "country_name, modern/ancient/unknown":
        #   extracted_country, extracted_type = merge_metadata["country"], merge_metadata["sample_type"]  
        #   country_explanation,sample_type_explanation = merge_metadata["country_explanation"], merge_metadata["sample_type_explanation"]
        # elif output_format_str == "modern/ancient/unknown":
        #   extracted_type = merge_metadata["sample_type"]  
        #   sample_type_explanation = merge_metadata["sample_type_explanation"]
        # for the output_format that is not default
        if output_format_str == "country_name, modern/ancient/unknown":
          outputs = output_format_str.split(", ")
          extracted_country, extracted_type = metadata_list[outputs[0]]["answer"], metadata_list[outputs[1]]["answer"]  
          country_explanation,sample_type_explanation = metadata_list[outputs[0]][outputs[0]+"_explanation"], metadata_list[outputs[1]][outputs[1]+"_explanation"]
          # extracted_ethnicity, extracted_specific_location = metadata_list[outputs[2]]["answer"], metadata_list[outputs[3]]["answer"]  
          # ethnicity_explanation, specific_loc_explanation = metadata_list[outputs[2]][outputs[2]+"_explanation"], metadata_list[outputs[3]][outputs[3]+"_explanation"]
    # 6. Optional: Second LLM call for specific_location from general knowledge if still unknown
    # if extracted_specific_location == 'unknown':
    #     # Check if we have enough info to ask general knowledge LLM
    #     if extracted_country != 'unknown' and extracted_ethnicity != 'unknown':
    #         print(f"  DEBUG: Specific location still unknown. Querying general knowledge LLM from '{extracted_ethnicity}' and '{extracted_country}'.")

    #         general_knowledge_prompt = (
    #             f"Based on general knowledge, what is a highly specific location (city or district) "
    #             f"associated with the ethnicity '{extracted_ethnicity}' in '{extracted_country}'? "
    #             f"Consider the context of scientific studies on human genetics, if known. "
    #             f"If no common specific location is known, state 'unknown'. "
    #             f"Provide only the city or district name, or 'unknown'."
    #         )

    #         general_llm_response, general_llm_model_instance = call_llm_api(general_knowledge_prompt, model_name='gemini-1.5-flash-latest')

    #         if general_llm_response and general_llm_response.lower().strip() != 'unknown':
    #             extracted_specific_location = general_llm_response.strip() + " (predicted from general knowledge)"
    #             # Add cost of this second LLM call
    #             if general_llm_model_instance:
    #                 try:
    #                     gk_input_tokens = general_llm_model_instance.count_tokens(general_knowledge_prompt).total_tokens
    #                     gk_output_tokens = general_llm_model_instance.count_tokens(general_llm_response).total_tokens
    #                     gk_cost = (gk_input_tokens / 1000) * PRICE_PER_1K_INPUT_LLM + \
    #                               (gk_output_tokens / 1000) * PRICE_PER_1K_OUTPUT_LLM
    #                     print(f"  DEBUG: General Knowledge LLM cost to predict specific location alone: ${gk_cost:.6f}")
    #                     total_query_cost += gk_cost # Accumulate cost
    #                 except Exception as e:
    #                     print(f"  DEBUG: Error counting GK LLM tokens: {e}")
    #         else:
    #             print("  DEBUG: General knowledge LLM returned unknown or empty for specific location.")
    # # 6. Optional: Second LLM call for ethnicity from general knowledge if still unknown
    # if extracted_ethnicity == 'unknown':
    #     # Check if we have enough info to ask general knowledge LLM
    #     if extracted_country != 'unknown' and extracted_specific_location != 'unknown':
    #         print(f"  DEBUG: Ethnicity still unknown. Querying general knowledge LLM from '{extracted_specific_location}' and '{extracted_country}'.")

    #         general_knowledge_prompt = (
    #             f"Based on general knowledge, what is a highly ethnicity (population) "
    #             f"associated with the specific location '{extracted_specific_location}' in '{extracted_country}'? "
    #             f"Consider the context of scientific studies on human genetics, if known. "
    #             f"If no common ethnicity is known, state 'unknown'. "
    #             f"Provide only the ethnicity or popluation name, or 'unknown'."
    #         )

    #         general_llm_response, general_llm_model_instance = call_llm_api(general_knowledge_prompt, model_name='gemini-1.5-flash-latest')

    #         if general_llm_response and general_llm_response.lower().strip() != 'unknown':
    #             extracted_ethnicity = general_llm_response.strip() + " (predicted from general knowledge)"
    #             # Add cost of this second LLM call
    #             if general_llm_model_instance:
    #                 try:
    #                     gk_input_tokens = general_llm_model_instance.count_tokens(general_knowledge_prompt).total_tokens
    #                     gk_output_tokens = general_llm_model_instance.count_tokens(general_llm_response).total_tokens
    #                     gk_cost = (gk_input_tokens / 1000) * PRICE_PER_1K_INPUT_LLM + \
    #                               (gk_output_tokens / 1000) * PRICE_PER_1K_OUTPUT_LLM
    #                     print(f"  DEBUG: General Knowledge LLM cost to predict ethnicity alone: ${gk_cost:.6f}")
    #                     total_query_cost += gk_cost # Accumulate cost
    #                 except Exception as e:
    #                     print(f"  DEBUG: Error counting GK LLM tokens: {e}")
    #         else:
    #             print("  DEBUG: General knowledge LLM returned unknown or empty for ethnicity.")            


    #return extracted_country, extracted_type, method_used, extracted_ethnicity, extracted_specific_location, total_query_cost
    return extracted_country, extracted_type, method_used, country_explanation, sample_type_explanation, total_query_cost