Vlad-T's picture
Create tools.py
4d49b06 verified
from smolagents import Tool
import pandas as pd
import os
import tempfile
import requests
from urllib.parse import urlparse
import json
import re
from datetime import datetime, timedelta
class ReverseTextTool(Tool):
name = "reverse_text"
description = "Reverses the text in a string."
inputs = {
"text": {
"type": "string",
"description": "The text to reverse."
}
}
output_type = "string"
def forward(self, text: str) -> str:
return text[::-1]
class ExtractTextFromImageTool(Tool):
name = "extract_text_from_image"
description = "Extracts text from an image file using OCR."
inputs = {
"image_path": {
"type": "string",
"description": "Path to the image file."
}
}
output_type = "string"
def forward(self, image_path: str) -> str:
try:
# Try to import pytesseract
import pytesseract
from PIL import Image
# Open the image
image = Image.open(image_path)
# Try different configurations for better results
configs = [
'--psm 6', # Assume a single uniform block of text
'--psm 3', # Automatic page segmentation, but no OSD
'--psm 1', # Automatic page segmentation with OSD
]
results = []
for config in configs:
try:
text = pytesseract.image_to_string(image, config=config)
if text.strip():
results.append(text)
except Exception:
continue
if results:
# Return the longest result, which is likely the most complete
return f"Extracted text from image:\n\n{max(results, key=len)}"
else:
return "No text could be extracted from the image."
except ImportError:
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
except Exception as e:
return f"Error extracting text from image: {str(e)}"
class AnalyzeCSVTool(Tool):
name = "analyze_csv_file"
description = "Analyzes a CSV file and provides information about its contents."
inputs = {
"file_path": {
"type": "string",
"description": "Path to the CSV file."
},
"query": {
"type": "string",
"description": "Optional query about the data.",
"default": "",
"nullable": True
}
}
output_type = "string"
def forward(self, file_path: str, query: str = "") -> str:
try:
# Read CSV file with different encodings if needed
for encoding in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']:
try:
df = pd.read_csv(file_path, encoding=encoding)
break
except UnicodeDecodeError:
continue
else:
return "Error: Could not read the CSV file with any of the attempted encodings."
# Basic information
result = f"CSV file has {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# If there's a specific query
if query:
if "count" in query.lower():
result += f"Row count: {len(df)}\n"
# Look for column-specific queries
for col in df.columns:
if col.lower() in query.lower():
result += f"\nColumn '{col}' information:\n"
if pd.api.types.is_numeric_dtype(df[col]):
result += f"Min: {df[col].min()}\n"
result += f"Max: {df[col].max()}\n"
result += f"Mean: {df[col].mean()}\n"
result += f"Median: {df[col].median()}\n"
else:
# For categorical data
value_counts = df[col].value_counts().head(10)
result += f"Unique values: {df[col].nunique()}\n"
result += f"Top values:\n{value_counts.to_string()}\n"
# General statistics for all columns
else:
# For numeric columns
numeric_cols = df.select_dtypes(include=['number']).columns
if len(numeric_cols) > 0:
result += "Numeric columns statistics:\n"
result += df[numeric_cols].describe().to_string()
result += "\n\n"
# For categorical columns, show counts of unique values
cat_cols = df.select_dtypes(exclude=['number']).columns
if len(cat_cols) > 0:
result += "Categorical columns:\n"
for col in cat_cols[:5]: # Limit to first 5 columns
result += f"- {col}: {df[col].nunique()} unique values\n"
return result
except Exception as e:
return f"Error analyzing CSV file: {str(e)}"
class AnalyzeExcelTool(Tool):
name = "analyze_excel_file"
description = "Analyzes an Excel file and provides information about its contents."
inputs = {
"file_path": {
"type": "string",
"description": "Path to the Excel file."
},
"query": {
"type": "string",
"description": "Optional query about the data.",
"default": "",
"nullable": True
},
"sheet_name": {
"type": "string",
"description": "Name of the sheet to analyze (defaults to first sheet).",
"default": None,
"nullable": True
}
}
output_type = "string"
def forward(self, file_path: str, query: str = "", sheet_name: str = None) -> str:
try:
# Read sheet names first
excel_file = pd.ExcelFile(file_path)
sheet_names = excel_file.sheet_names
# Info about all sheets
result = f"Excel file contains {len(sheet_names)} sheets: {', '.join(sheet_names)}\n\n"
# If sheet name is specified, use it; otherwise use first sheet
if sheet_name is None:
sheet_name = sheet_names[0]
elif sheet_name not in sheet_names:
return f"Error: Sheet '{sheet_name}' not found. Available sheets: {', '.join(sheet_names)}"
# Read the specified sheet
df = pd.read_excel(file_path, sheet_name=sheet_name)
# Basic information
result += f"Sheet '{sheet_name}' has {len(df)} rows and {len(df.columns)} columns.\n"
result += f"Columns: {', '.join(df.columns)}\n\n"
# Handle query similar to CSV tool
if query:
if "count" in query.lower():
result += f"Row count: {len(df)}\n"
# Look for column-specific queries
for col in df.columns:
if col.lower() in query.lower():
result += f"\nColumn '{col}' information:\n"
if pd.api.types.is_numeric_dtype(df[col]):
result += f"Min: {df[col].min()}\n"
result += f"Max: {df[col].max()}\n"
result += f"Mean: {df[col].mean()}\n"
result += f"Median: {df[col].median()}\n"
else:
# For categorical data
value_counts = df[col].value_counts().head(10)
result += f"Unique values: {df[col].nunique()}\n"
result += f"Top values:\n{value_counts.to_string()}\n"
else:
# For numeric columns
numeric_cols = df.select_dtypes(include=['number']).columns
if len(numeric_cols) > 0:
result += "Numeric columns statistics:\n"
result += df[numeric_cols].describe().to_string()
result += "\n\n"
# For categorical columns, show counts of unique values
cat_cols = df.select_dtypes(exclude=['number']).columns
if len(cat_cols) > 0:
result += "Categorical columns:\n"
for col in cat_cols[:5]: # Limit to first 5 columns
result += f"- {col}: {df[col].nunique()} unique values\n"
return result
except Exception as e:
return f"Error analyzing Excel file: {str(e)}"
class DateCalculatorTool(Tool):
name = "date_calculator"
description = "Performs date calculations like adding days, formatting dates, etc."
inputs = {
"query": {
"type": "string",
"description": "The date calculation to perform (e.g., 'What day is 10 days from today?', 'Format 2023-05-15 as MM/DD/YYYY')"
}
}
output_type = "string"
def forward(self, query: str) -> str:
try:
# Get current date/time
if re.search(r'(today|now|current date|current time)', query, re.IGNORECASE):
now = datetime.now()
if 'time' in query.lower():
return f"Current date and time: {now.strftime('%Y-%m-%d %H:%M:%S')}"
else:
return f"Today's date: {now.strftime('%Y-%m-%d')}"
# Add days to a date
add_match = re.search(r'(what|when).+?(\d+)\s+(day|days|week|weeks|month|months|year|years)\s+(from|after)\s+(.+)', query, re.IGNORECASE)
if add_match:
amount = int(add_match.group(2))
unit = add_match.group(3).lower()
date_text = add_match.group(5).strip()
# Parse the date
if date_text.lower() in ['today', 'now']:
base_date = datetime.now()
else:
try:
# Try various date formats
for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']:
try:
base_date = datetime.strptime(date_text, fmt)
break
except ValueError:
continue
else:
return f"Could not parse date: {date_text}"
except Exception as e:
return f"Error parsing date: {e}"
# Calculate new date
if 'day' in unit:
new_date = base_date + timedelta(days=amount)
elif 'week' in unit:
new_date = base_date + timedelta(weeks=amount)
elif 'month' in unit:
# Simplified month calculation
new_month = base_date.month + amount
new_year = base_date.year + (new_month - 1) // 12
new_month = ((new_month - 1) % 12) + 1
new_date = base_date.replace(year=new_year, month=new_month)
elif 'year' in unit:
new_date = base_date.replace(year=base_date.year + amount)
return f"Date {amount} {unit} from {base_date.strftime('%Y-%m-%d')} is {new_date.strftime('%Y-%m-%d')}"
# Format a date
format_match = re.search(r'format\s+(.+?)\s+as\s+(.+)', query, re.IGNORECASE)
if format_match:
date_text = format_match.group(1).strip()
format_spec = format_match.group(2).strip()
# Parse the date
if date_text.lower() in ['today', 'now']:
date_obj = datetime.now()
else:
try:
# Try various date formats
for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']:
try:
date_obj = datetime.strptime(date_text, fmt)
break
except ValueError:
continue
else:
return f"Could not parse date: {date_text}"
except Exception as e:
return f"Error parsing date: {e}"
# Convert format specification to strftime format
format_mapping = {
'YYYY': '%Y',
'YY': '%y',
'MM': '%m',
'DD': '%d',
'HH': '%H',
'mm': '%M',
'ss': '%S'
}
strftime_format = format_spec
for key, value in format_mapping.items():
strftime_format = strftime_format.replace(key, value)
return f"Formatted date: {date_obj.strftime(strftime_format)}"
return "I couldn't understand the date calculation query."
except Exception as e:
return f"Error performing date calculation: {str(e)}"
class DownloadFileTool(Tool):
name = "download_file"
description = "Downloads a file from a URL and saves it locally."
inputs = {
"url": {
"type": "string",
"description": "The URL to download from."
},
"filename": {
"type": "string",
"description": "Optional filename to save as (default: derived from URL).",
"default": None,
"nullable": True
}
}
output_type = "string"
def forward(self, url: str, filename: str = None) -> str:
try:
# Parse URL to get filename if not provided
if not filename:
path = urlparse(url).path
filename = os.path.basename(path)
if not filename:
# Generate a random name if we couldn't extract one
import uuid
filename = f"downloaded_{uuid.uuid4().hex[:8]}"
# Create temporary file
temp_dir = tempfile.gettempdir()
filepath = os.path.join(temp_dir, filename)
# Download the file
response = requests.get(url, stream=True)
response.raise_for_status()
# Save the file
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return f"File downloaded to {filepath}. You can now analyze this file."
except Exception as e:
return f"Error downloading file: {str(e)}"