|
from smolagents import Tool |
|
import pandas as pd |
|
import os |
|
import tempfile |
|
import requests |
|
from urllib.parse import urlparse |
|
import json |
|
import re |
|
from datetime import datetime, timedelta |
|
|
|
class ReverseTextTool(Tool): |
|
name = "reverse_text" |
|
description = "Reverses the text in a string." |
|
inputs = { |
|
"text": { |
|
"type": "string", |
|
"description": "The text to reverse." |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, text: str) -> str: |
|
return text[::-1] |
|
|
|
class ExtractTextFromImageTool(Tool): |
|
name = "extract_text_from_image" |
|
description = "Extracts text from an image file using OCR." |
|
inputs = { |
|
"image_path": { |
|
"type": "string", |
|
"description": "Path to the image file." |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, image_path: str) -> str: |
|
try: |
|
|
|
import pytesseract |
|
from PIL import Image |
|
|
|
|
|
image = Image.open(image_path) |
|
|
|
|
|
configs = [ |
|
'--psm 6', |
|
'--psm 3', |
|
'--psm 1', |
|
] |
|
|
|
results = [] |
|
for config in configs: |
|
try: |
|
text = pytesseract.image_to_string(image, config=config) |
|
if text.strip(): |
|
results.append(text) |
|
except Exception: |
|
continue |
|
|
|
if results: |
|
|
|
return f"Extracted text from image:\n\n{max(results, key=len)}" |
|
else: |
|
return "No text could be extracted from the image." |
|
except ImportError: |
|
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system." |
|
except Exception as e: |
|
return f"Error extracting text from image: {str(e)}" |
|
|
|
class AnalyzeCSVTool(Tool): |
|
name = "analyze_csv_file" |
|
description = "Analyzes a CSV file and provides information about its contents." |
|
inputs = { |
|
"file_path": { |
|
"type": "string", |
|
"description": "Path to the CSV file." |
|
}, |
|
"query": { |
|
"type": "string", |
|
"description": "Optional query about the data.", |
|
"default": "", |
|
"nullable": True |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, file_path: str, query: str = "") -> str: |
|
try: |
|
|
|
for encoding in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']: |
|
try: |
|
df = pd.read_csv(file_path, encoding=encoding) |
|
break |
|
except UnicodeDecodeError: |
|
continue |
|
else: |
|
return "Error: Could not read the CSV file with any of the attempted encodings." |
|
|
|
|
|
result = f"CSV file has {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
if query: |
|
if "count" in query.lower(): |
|
result += f"Row count: {len(df)}\n" |
|
|
|
|
|
for col in df.columns: |
|
if col.lower() in query.lower(): |
|
result += f"\nColumn '{col}' information:\n" |
|
if pd.api.types.is_numeric_dtype(df[col]): |
|
result += f"Min: {df[col].min()}\n" |
|
result += f"Max: {df[col].max()}\n" |
|
result += f"Mean: {df[col].mean()}\n" |
|
result += f"Median: {df[col].median()}\n" |
|
else: |
|
|
|
value_counts = df[col].value_counts().head(10) |
|
result += f"Unique values: {df[col].nunique()}\n" |
|
result += f"Top values:\n{value_counts.to_string()}\n" |
|
|
|
|
|
else: |
|
|
|
numeric_cols = df.select_dtypes(include=['number']).columns |
|
if len(numeric_cols) > 0: |
|
result += "Numeric columns statistics:\n" |
|
result += df[numeric_cols].describe().to_string() |
|
result += "\n\n" |
|
|
|
|
|
cat_cols = df.select_dtypes(exclude=['number']).columns |
|
if len(cat_cols) > 0: |
|
result += "Categorical columns:\n" |
|
for col in cat_cols[:5]: |
|
result += f"- {col}: {df[col].nunique()} unique values\n" |
|
|
|
return result |
|
except Exception as e: |
|
return f"Error analyzing CSV file: {str(e)}" |
|
|
|
class AnalyzeExcelTool(Tool): |
|
name = "analyze_excel_file" |
|
description = "Analyzes an Excel file and provides information about its contents." |
|
inputs = { |
|
"file_path": { |
|
"type": "string", |
|
"description": "Path to the Excel file." |
|
}, |
|
"query": { |
|
"type": "string", |
|
"description": "Optional query about the data.", |
|
"default": "", |
|
"nullable": True |
|
}, |
|
"sheet_name": { |
|
"type": "string", |
|
"description": "Name of the sheet to analyze (defaults to first sheet).", |
|
"default": None, |
|
"nullable": True |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, file_path: str, query: str = "", sheet_name: str = None) -> str: |
|
try: |
|
|
|
excel_file = pd.ExcelFile(file_path) |
|
sheet_names = excel_file.sheet_names |
|
|
|
|
|
result = f"Excel file contains {len(sheet_names)} sheets: {', '.join(sheet_names)}\n\n" |
|
|
|
|
|
if sheet_name is None: |
|
sheet_name = sheet_names[0] |
|
elif sheet_name not in sheet_names: |
|
return f"Error: Sheet '{sheet_name}' not found. Available sheets: {', '.join(sheet_names)}" |
|
|
|
|
|
df = pd.read_excel(file_path, sheet_name=sheet_name) |
|
|
|
|
|
result += f"Sheet '{sheet_name}' has {len(df)} rows and {len(df.columns)} columns.\n" |
|
result += f"Columns: {', '.join(df.columns)}\n\n" |
|
|
|
|
|
if query: |
|
if "count" in query.lower(): |
|
result += f"Row count: {len(df)}\n" |
|
|
|
|
|
for col in df.columns: |
|
if col.lower() in query.lower(): |
|
result += f"\nColumn '{col}' information:\n" |
|
if pd.api.types.is_numeric_dtype(df[col]): |
|
result += f"Min: {df[col].min()}\n" |
|
result += f"Max: {df[col].max()}\n" |
|
result += f"Mean: {df[col].mean()}\n" |
|
result += f"Median: {df[col].median()}\n" |
|
else: |
|
|
|
value_counts = df[col].value_counts().head(10) |
|
result += f"Unique values: {df[col].nunique()}\n" |
|
result += f"Top values:\n{value_counts.to_string()}\n" |
|
else: |
|
|
|
numeric_cols = df.select_dtypes(include=['number']).columns |
|
if len(numeric_cols) > 0: |
|
result += "Numeric columns statistics:\n" |
|
result += df[numeric_cols].describe().to_string() |
|
result += "\n\n" |
|
|
|
|
|
cat_cols = df.select_dtypes(exclude=['number']).columns |
|
if len(cat_cols) > 0: |
|
result += "Categorical columns:\n" |
|
for col in cat_cols[:5]: |
|
result += f"- {col}: {df[col].nunique()} unique values\n" |
|
|
|
return result |
|
except Exception as e: |
|
return f"Error analyzing Excel file: {str(e)}" |
|
|
|
class DateCalculatorTool(Tool): |
|
name = "date_calculator" |
|
description = "Performs date calculations like adding days, formatting dates, etc." |
|
inputs = { |
|
"query": { |
|
"type": "string", |
|
"description": "The date calculation to perform (e.g., 'What day is 10 days from today?', 'Format 2023-05-15 as MM/DD/YYYY')" |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, query: str) -> str: |
|
try: |
|
|
|
if re.search(r'(today|now|current date|current time)', query, re.IGNORECASE): |
|
now = datetime.now() |
|
|
|
if 'time' in query.lower(): |
|
return f"Current date and time: {now.strftime('%Y-%m-%d %H:%M:%S')}" |
|
else: |
|
return f"Today's date: {now.strftime('%Y-%m-%d')}" |
|
|
|
|
|
add_match = re.search(r'(what|when).+?(\d+)\s+(day|days|week|weeks|month|months|year|years)\s+(from|after)\s+(.+)', query, re.IGNORECASE) |
|
if add_match: |
|
amount = int(add_match.group(2)) |
|
unit = add_match.group(3).lower() |
|
date_text = add_match.group(5).strip() |
|
|
|
|
|
if date_text.lower() in ['today', 'now']: |
|
base_date = datetime.now() |
|
else: |
|
try: |
|
|
|
for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']: |
|
try: |
|
base_date = datetime.strptime(date_text, fmt) |
|
break |
|
except ValueError: |
|
continue |
|
else: |
|
return f"Could not parse date: {date_text}" |
|
except Exception as e: |
|
return f"Error parsing date: {e}" |
|
|
|
|
|
if 'day' in unit: |
|
new_date = base_date + timedelta(days=amount) |
|
elif 'week' in unit: |
|
new_date = base_date + timedelta(weeks=amount) |
|
elif 'month' in unit: |
|
|
|
new_month = base_date.month + amount |
|
new_year = base_date.year + (new_month - 1) // 12 |
|
new_month = ((new_month - 1) % 12) + 1 |
|
new_date = base_date.replace(year=new_year, month=new_month) |
|
elif 'year' in unit: |
|
new_date = base_date.replace(year=base_date.year + amount) |
|
|
|
return f"Date {amount} {unit} from {base_date.strftime('%Y-%m-%d')} is {new_date.strftime('%Y-%m-%d')}" |
|
|
|
|
|
format_match = re.search(r'format\s+(.+?)\s+as\s+(.+)', query, re.IGNORECASE) |
|
if format_match: |
|
date_text = format_match.group(1).strip() |
|
format_spec = format_match.group(2).strip() |
|
|
|
|
|
if date_text.lower() in ['today', 'now']: |
|
date_obj = datetime.now() |
|
else: |
|
try: |
|
|
|
for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']: |
|
try: |
|
date_obj = datetime.strptime(date_text, fmt) |
|
break |
|
except ValueError: |
|
continue |
|
else: |
|
return f"Could not parse date: {date_text}" |
|
except Exception as e: |
|
return f"Error parsing date: {e}" |
|
|
|
|
|
format_mapping = { |
|
'YYYY': '%Y', |
|
'YY': '%y', |
|
'MM': '%m', |
|
'DD': '%d', |
|
'HH': '%H', |
|
'mm': '%M', |
|
'ss': '%S' |
|
} |
|
|
|
strftime_format = format_spec |
|
for key, value in format_mapping.items(): |
|
strftime_format = strftime_format.replace(key, value) |
|
|
|
return f"Formatted date: {date_obj.strftime(strftime_format)}" |
|
|
|
return "I couldn't understand the date calculation query." |
|
except Exception as e: |
|
return f"Error performing date calculation: {str(e)}" |
|
|
|
class DownloadFileTool(Tool): |
|
name = "download_file" |
|
description = "Downloads a file from a URL and saves it locally." |
|
inputs = { |
|
"url": { |
|
"type": "string", |
|
"description": "The URL to download from." |
|
}, |
|
"filename": { |
|
"type": "string", |
|
"description": "Optional filename to save as (default: derived from URL).", |
|
"default": None, |
|
"nullable": True |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, url: str, filename: str = None) -> str: |
|
try: |
|
|
|
if not filename: |
|
path = urlparse(url).path |
|
filename = os.path.basename(path) |
|
if not filename: |
|
|
|
import uuid |
|
filename = f"downloaded_{uuid.uuid4().hex[:8]}" |
|
|
|
|
|
temp_dir = tempfile.gettempdir() |
|
filepath = os.path.join(temp_dir, filename) |
|
|
|
|
|
response = requests.get(url, stream=True) |
|
response.raise_for_status() |
|
|
|
|
|
with open(filepath, 'wb') as f: |
|
for chunk in response.iter_content(chunk_size=8192): |
|
f.write(chunk) |
|
|
|
return f"File downloaded to {filepath}. You can now analyze this file." |
|
except Exception as e: |
|
return f"Error downloading file: {str(e)}" |