File size: 5,421 Bytes
181722d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import argparse
import os
import random

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr

from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Chat, CONV_VISION

# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *


def parse_args():
    parser = argparse.ArgumentParser(description="Demo")
    parser.add_argument("--cfg-path", type=str, default='eval_configs/minigpt4.yaml', help="path to configuration file.")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
        "in xxx=yyy format will be merged into config file (deprecate), "
        "change to --cfg-options instead.",
    )
    args = parser.parse_args()
    return args


def setup_seeds(config):
    seed = config.run_cfg.seed + get_rank()

    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    cudnn.benchmark = False
    cudnn.deterministic = True


# ========================================
#             Model Initialization
# ========================================

print('Initializing Chat')
cfg = Config(parse_args())

model_config = cfg.model_cfg
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:0')

vis_processor_cfg = cfg.datasets_cfg.cc_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor)
print('Initialization Finished')

# ========================================
#             Gradio Setting
# ========================================

def gradio_reset(chat_state, img_list):
    chat_state.messages = []
    img_list = []
    return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False), gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list

def upload_img(gr_img, text_input, chat_state):
    if gr_img is None:
        return None, None, gr.update(interactive=True)
    chat_state = CONV_VISION.copy()
    img_list = []
    llm_message = chat.upload_img(gr_img, chat_state, img_list)
    return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list

def gradio_ask(user_message, chatbot, chat_state):
    if len(user_message) == 0:
        return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
    chat.ask(user_message, chat_state)
    chatbot = chatbot + [[user_message, None]]
    return '', chatbot, chat_state


def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
    llm_message = chat.answer(conv=chat_state, img_list=img_list, max_new_tokens=1000, num_beams=num_beams, temperature=temperature)[0]
    chatbot[-1][1] = llm_message
    return chatbot, chat_state, img_list

title = """<h1 align="center">Demo of MiniGPT-4</h1>"""
description = """<h3>This is the demo of MiniGPT-4. Upload your images and start chatting!</h3>"""
article = """<strong>Paper</strong>: <a href='https://github.com/Vision-CAIR/MiniGPT-4/blob/main/MiniGPT_4.pdf' target='_blank'>Here</a>
<strong>Code</strong>: <a href='https://github.com/Vision-CAIR/MiniGPT-4' target='_blank'>Here</a>
<strong>Project Page</strong>: <a href='https://minigpt-4.github.io/' target='_blank'>Here</a>
"""

#TODO show examples below

with gr.Blocks() as demo:
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(article)

    with gr.Row():
        with gr.Column(scale=0.5):
            image = gr.Image(type="pil")
            upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
            clear = gr.Button("Restart")
            
            num_beams = gr.Slider(
                minimum=1,
                maximum=16,
                value=5,
                step=1,
                interactive=True,
                label="beam search numbers)",
            )
            
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=1.0,
                step=0.1,
                interactive=True,
                label="Temperature",
            )
            

        with gr.Column():
            chat_state = gr.State()
            img_list = gr.State()
            chatbot = gr.Chatbot(label='MiniGPT-4')
            text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
    
    upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list])
    
    text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
        gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature], [chatbot, chat_state, img_list]
    )
    clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False)

demo.launch(share=True, enable_queue=True)