Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,780 Bytes
2ada650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import datetime
import json
import logging
import os
import time
from pathlib import Path
import torch
import torch.distributed as dist
import webdataset as wds
import wandb
from minigpt4.common.dist_utils import (
download_cached_file,
get_rank,
get_world_size,
is_main_process,
main_process,
)
from minigpt4.common.registry import registry
from minigpt4.common.utils import is_url
from minigpt4.datasets.data_utils import concat_datasets, reorg_datasets_by_split, ChainDataset
from minigpt4.datasets.datasets.dataloader_utils import (
IterLoader,
MultiIterLoader,
PrefetchLoader,
)
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader, DistributedSampler
from minigpt4.processors.blip_processors import Blip2ImageTrainProcessor,BlipCaptionProcessor
from minigpt4.datasets.datasets.video_datasets import Video_validation_Dataset
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser
from minigpt4.conversation.conversation import CONV_VISION
from tqdm import tqdm
from omegaconf import OmegaConf
@registry.register_runner("runner_base")
class RunnerBase:
"""
A runner class to train and evaluate a model given a task and datasets.
The runner uses pytorch distributed data parallel by default. Future release
will support other distributed frameworks.
"""
def __init__(self, cfg, task, model, datasets, job_id):
self.config = cfg
self.job_id = job_id
self.task = task
self.datasets = datasets
self._model = model
self._wrapped_model = None
self._device = None
self._optimizer = None
self._scaler = None
self._dataloaders = None
self._lr_sched = None
self.start_epoch = 0
# self.setup_seeds()
self.setup_output_dir()
@property
def device(self):
if self._device is None:
self._device = torch.device(self.config.run_cfg.device)
return self._device
@property
def use_distributed(self):
return self.config.run_cfg.distributed
@property
def model(self):
"""
A property to get the DDP-wrapped model on the device.
"""
# move model to device
# print("self device",self.device)
# print("self model device",self._model.device)
# print(self._model.device, self.device)
if self._model.device != self.device:
self._model = self._model.to(self.device)
# distributed training wrapper
if self.use_distributed:
if self._wrapped_model is None:
self._wrapped_model = DDP(
self._model, device_ids=[self.config.run_cfg.gpu],find_unused_parameters=False
)
#
else:
self._wrapped_model = self._model
return self._wrapped_model
@property
def optimizer(self):
# TODO make optimizer class and configurations
if self._optimizer is None:
num_parameters = 0
p_wd, p_non_wd = [], []
for n, p in self.model.named_parameters():
if not p.requires_grad:
continue # frozen weights
print(n)
if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n:
p_non_wd.append(p)
else:
p_wd.append(p)
num_parameters += p.data.nelement()
logging.info("number of trainable parameters: %d" % num_parameters)
optim_params = [
{
"params": p_wd,
"weight_decay": float(self.config.run_cfg.weight_decay),
},
{"params": p_non_wd, "weight_decay": 0},
]
beta2 = self.config.run_cfg.get("beta2", 0.999)
self._optimizer = torch.optim.AdamW(
optim_params,
lr=float(self.config.run_cfg.init_lr),
weight_decay=float(self.config.run_cfg.weight_decay),
betas=(0.9, beta2),
)
return self._optimizer
@property
def scaler(self):
amp = self.config.run_cfg.get("amp", False)
# print("amp", amp)
# assert False
if amp:
if self._scaler is None:
self._scaler = torch.cuda.amp.GradScaler()
return self._scaler
@property
def lr_scheduler(self):
"""
A property to get and create learning rate scheduler by split just in need.
"""
if self._lr_sched is None:
lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched)
# max_epoch = self.config.run_cfg.max_epoch
max_epoch = self.max_epoch
# min_lr = self.config.run_cfg.min_lr
min_lr = self.min_lr
# init_lr = self.config.run_cfg.init_lr
init_lr = self.init_lr
# optional parameters
decay_rate = self.config.run_cfg.get("lr_decay_rate", None)
warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1)
warmup_steps = self.config.run_cfg.get("warmup_steps", 0)
iters_per_epoch = self.config.run_cfg.get("iters_per_epoch", None)
if iters_per_epoch is None:
try:
iters_per_epoch = len(self.dataloaders['train'])
except (AttributeError, TypeError):
iters_per_epoch = 10000
self._lr_sched = lr_sched_cls(
optimizer=self.optimizer,
max_epoch=max_epoch,
iters_per_epoch=iters_per_epoch,
min_lr=min_lr,
init_lr=init_lr,
decay_rate=decay_rate,
warmup_start_lr=warmup_start_lr,
warmup_steps=warmup_steps,
)
return self._lr_sched
@property
def dataloaders(self) -> dict:
"""
A property to get and create dataloaders by split just in need.
If no train_dataset_ratio is provided, concatenate map-style datasets and
chain wds.DataPipe datasets separately. Training set becomes a tuple
(ConcatDataset, ChainDataset), both are optional but at least one of them is
required. The resultant ConcatDataset and ChainDataset will be sampled evenly.
If train_dataset_ratio is provided, create a MultiIterLoader to sample
each dataset by ratios during training.
Currently do not support multiple datasets for validation and test.
Returns:
dict: {split_name: (tuples of) dataloader}
"""
if self._dataloaders is None:
# concatenate map-style datasets and chain wds.DataPipe datasets separately
# training set becomes a tuple (ConcatDataset, ChainDataset), both are
# optional but at least one of them is required. The resultant ConcatDataset
# and ChainDataset will be sampled evenly.
logging.info(
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)."
)
batch_sizes = {dataset_name: getattr(self.config.datasets_cfg, dataset_name).batch_size
for dataset_name in self.datasets.keys()}
datasets, batch_sizes = reorg_datasets_by_split(self.datasets, batch_sizes)
self.datasets = datasets
# self.datasets = concat_datasets(datasets)
# print dataset statistics after concatenation/chaining
for split_name in self.datasets:
if isinstance(self.datasets[split_name], tuple) or isinstance(
self.datasets[split_name], list
):
# mixed wds.DataPipeline and torch.utils.data.Dataset
num_records = sum(
[
len(d)
if not type(d) in [wds.DataPipeline, ChainDataset]
else 0
for d in self.datasets[split_name]
]
)
else:
if hasattr(self.datasets[split_name], "__len__"):
# a single map-style dataset
num_records = len(self.datasets[split_name])
else:
# a single wds.DataPipeline
num_records = -1
logging.info(
"Only a single wds.DataPipeline dataset, no __len__ attribute."
)
if num_records >= 0:
logging.info(
"Loaded {} records for {} split from the dataset.".format(
num_records, split_name
)
)
# create dataloaders
split_names = sorted(self.datasets.keys())
datasets = [self.datasets[split] for split in split_names]
batch_sizes = [batch_sizes[split] for split in split_names]
is_trains = [split in self.train_splits for split in split_names]
# batch_sizes = [
# self.config.run_cfg.batch_size_train
# if split == "train"
# else self.config.run_cfg.batch_size_eval
# for index, split in enumerate(split_names)
# ]
# print(split_names)
print("batch sizes", batch_sizes)
collate_fns = []
for dataset in datasets:
if isinstance(dataset, tuple) or isinstance(dataset, list):
collate_fns.append([getattr(d, "collater", None) for d in dataset])
else:
collate_fns.append(getattr(dataset, "collater", None))
dataloaders = self.create_loaders(
datasets=datasets,
num_workers=self.config.run_cfg.num_workers,
batch_sizes=batch_sizes,
is_trains=is_trains,
collate_fns=collate_fns,
)
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)}
return self._dataloaders
@property
def cuda_enabled(self):
return self.device.type == "cuda"
@property
def max_epoch(self):
return int(self.config.run_cfg.max_epoch)
@property
def log_freq(self):
log_freq = self.config.run_cfg.get("log_freq", 50)
return int(log_freq)
@property
def init_lr(self):
return float(self.config.run_cfg.init_lr)
@property
def min_lr(self):
return float(self.config.run_cfg.min_lr)
@property
def accum_grad_iters(self):
return int(self.config.run_cfg.get("accum_grad_iters", 1))
@property
def valid_splits(self):
valid_splits = self.config.run_cfg.get("valid_splits", [])
if len(valid_splits) == 0:
logging.info("No validation splits found.")
return valid_splits
@property
def test_splits(self):
test_splits = self.config.run_cfg.get("test_splits", [])
return test_splits
@property
def train_splits(self):
train_splits = self.config.run_cfg.get("train_splits", [])
if len(train_splits) == 0:
logging.info("Empty train splits.")
return train_splits
@property
def evaluate_only(self):
"""
Set to True to skip training.
"""
return self.config.run_cfg.evaluate
@property
def use_dist_eval_sampler(self):
return self.config.run_cfg.get("use_dist_eval_sampler", True)
@property
def resume_ckpt_path(self):
return self.config.run_cfg.get("resume_ckpt_path", None)
@property
def train_loader(self):
train_dataloader = self.dataloaders["train"]
return train_dataloader
def setup_output_dir(self):
lib_root = Path(registry.get_path("library_root"))
output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id
# output_dir = lib_root / self.config.run_cfg.output_dir
result_dir = output_dir / "result"
output_dir.mkdir(parents=True, exist_ok=True)
result_dir.mkdir(parents=True, exist_ok=True)
registry.register_path("result_dir", str(result_dir))
registry.register_path("output_dir", str(output_dir))
self.result_dir = result_dir
self.output_dir = output_dir
def train(self):
start_time = time.time()
best_agg_metric = 0
best_epoch = 0
self.log_config()
# resume from checkpoint if specified
if not self.evaluate_only and self.resume_ckpt_path is not None:
self._load_checkpoint(self.resume_ckpt_path)
for cur_epoch in range(self.start_epoch, self.max_epoch):
# training phase
if not self.evaluate_only:
logging.info("Start training")
train_stats = self.train_epoch(cur_epoch)
self.log_stats(split_name="train", stats=train_stats)
# evaluation phase
# if len(self.valid_splits) > 0 and self.config.run_cfg.video_instruction_eval:
# self._save_checkpoint(cur_epoch, is_best=False)
# for split_name in self.valid_splits:
# logging.info("Evaluating on {}.".format(split_name))
# ## Add validation
# val_log=self.custom_eval_epoch(cur_epoch)
# # val_log = self.eval_epoch(
# # split_name=split_name,cur_epoch=cur_epoch
# # )
# print("val log",val_log)
# if val_log is not None:
# if is_main_process():
# assert (
# "agg_metrics" in val_log
# ), "No agg_metrics found in validation log."
# agg_metrics = val_log["agg_metrics"]
# if agg_metrics > best_agg_metric and split_name == "val":
# best_epoch, best_agg_metric = cur_epoch, agg_metrics
# self._save_checkpoint(cur_epoch, is_best=True)
# val_log.update({"best_epoch": best_epoch})
# self.log_stats(val_log, split_name)
# wandb.log({"epoch": cur_epoch, "GPT4_Accuracy": val_log['agg_metrics']})
# print("Validation finished")
else:
# if no validation split is provided, we just save the checkpoint at the end of each epoch.
if not self.evaluate_only:
self._save_checkpoint(cur_epoch, is_best=False)
if self.evaluate_only:
break
if self.config.run_cfg.distributed:
dist.barrier()
# testing phase
test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch
self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logging.info("Training time {}".format(total_time_str))
def evaluate(self, cur_epoch="best", skip_reload=False):
test_logs = dict()
if len(self.test_splits) > 0:
for split_name in self.test_splits:
test_logs[split_name] = self.eval_epoch(
split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload
)
return test_logs
def train_epoch(self, epoch):
# train
self.model.train()
return self.task.train_epoch(
epoch=epoch,
model=self.model,
data_loader=self.train_loader,
optimizer=self.optimizer,
scaler=self.scaler,
lr_scheduler=self.lr_scheduler,
cuda_enabled=self.cuda_enabled,
log_freq=self.log_freq,
accum_grad_iters=self.accum_grad_iters,
)
@torch.no_grad()
def eval_epoch(self, split_name, cur_epoch, skip_reload=False):
"""
Evaluate the model on a given split.
Args:
split_name (str): name of the split to evaluate on.
cur_epoch (int): current epoch.
skip_reload_best (bool): whether to skip reloading the best checkpoint.
During training, we will reload the best checkpoint for validation.
During testing, we will use provided weights and skip reloading the best checkpoint .
"""
data_loader = self.dataloaders.get(split_name, None)
assert data_loader, "data_loader for split {} is None.".format(split_name)
# TODO In validation, you need to compute loss as well as metrics
# TODO consider moving to model.before_evaluation()
model = self.unwrap_dist_model(self.model)
if not skip_reload and cur_epoch == "best":
model = self._reload_best_model(model)
model.eval()
self.task.before_evaluation(
model=model,
dataset=self.datasets[split_name],
)
results = self.task.evaluation(model, data_loader)
if results is not None:
return self.task.after_evaluation(
val_result=results,
split_name=split_name,
epoch=cur_epoch,
)
def get_validation_loader(self):
# TODO make the path configurable
dataset_congif="minigpt4/configs/datasets/video_chatgpt/default.yaml"
# read the dataset config using omegaconf
config = OmegaConf.load(dataset_congif).datasets
config = config[list(config.keys())[0]]
vis_processor=Blip2ImageTrainProcessor()
validation_data = Video_validation_Dataset(vis_processor,
videos_path=config.valid['videos_path'],
ann_path=config.valid['ann_path'],
subtitles_path=config.valid['subtitles_path'],
annotations_keys=config.valid['annotations_keys'],
add_subtitles=config.valid['add_subtitles'],)
validation_dataloader = DataLoader(validation_data, batch_size=1, shuffle=False)
return validation_dataloader
@torch.no_grad()
def custom_eval_epoch(self, cur_epoch):
validation_dataloader=self.get_validation_loader()
model = self.unwrap_dist_model(self.model)
model.eval()
conv_temp = CONV_VISION.copy()
conv_temp.system = ""
results = []
for images, texts, gt_answers, lengths,videos_ids in tqdm(validation_dataloader):
texts = prepare_texts(texts, conv_temp, template='', lengths=lengths) # warp the texts with conversation template
models_answers = model.generate(images, texts, max_new_tokens=512, do_sample=False, lengths=lengths,num_beams=1)
for video_id,model_answer, gt_answer,text in zip(videos_ids,models_answers, gt_answers,texts):
result = dict()
result['video_name'] = video_id
result['Q'] = text.split('\n')[-1].replace('[/INST]','')
result['A'] = gt_answer
result['pred'] = model_answer
results.append(result)
val_log= self.task.after_evaluation(
val_result=results,
epoch=cur_epoch,
)
return val_log
def unwrap_dist_model(self, model):
if self.use_distributed:
return model.module
else:
return model
def create_loaders(
self,
datasets,
num_workers,
batch_sizes,
is_trains,
collate_fns,
dataset_ratios=None,
):
"""
Create dataloaders for training and validation.
"""
def _create_loader(dataset, num_workers, bsz, is_train, collate_fn):
# create a single dataloader for each split
if isinstance(dataset, ChainDataset) or isinstance(
dataset, wds.DataPipeline
):
# wds.WebdDataset instance are chained together
# webdataset.DataPipeline has its own sampler and collate_fn
loader = iter(
DataLoader(
dataset,
batch_size=bsz,
num_workers=num_workers,
pin_memory=True,
)
)
else:
# map-style dataset are concatenated together
# setup distributed sampler
if self.use_distributed:
sampler = DistributedSampler(
dataset,
shuffle=is_train,
num_replicas=get_world_size(),
rank=get_rank(),
)
if not self.use_dist_eval_sampler:
# e.g. retrieval evaluation
sampler = sampler if is_train else None
else:
sampler = None
loader = DataLoader(
dataset,
batch_size=bsz,
num_workers=num_workers,
pin_memory=True,
sampler=sampler,
shuffle=sampler is None and is_train,
collate_fn=collate_fn,
drop_last=True if is_train else False,
)
loader = PrefetchLoader(loader)
if is_train:
loader = IterLoader(loader, use_distributed=self.use_distributed)
return loader
loaders = []
for dataset, bsz, is_train, collate_fn in zip(
datasets, batch_sizes, is_trains, collate_fns
):
if isinstance(dataset, list) or isinstance(dataset, tuple):
if hasattr(dataset[0], 'sample_ratio') and dataset_ratios is None:
dataset_ratios = [d.sample_ratio for d in dataset]
loader = MultiIterLoader(
loaders=[
_create_loader(d, num_workers, bsz[i], is_train, collate_fn[i])
for i, d in enumerate(dataset)
],
ratios=dataset_ratios,
)
else:
loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn)
loaders.append(loader)
return loaders
@main_process
def _save_checkpoint(self, cur_epoch, is_best=False):
"""
Save the checkpoint at the current epoch.
"""
model_no_ddp = self.unwrap_dist_model(self.model)
param_grad_dic = {
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters()
}
state_dict = model_no_ddp.state_dict()
for k in list(state_dict.keys()):
if k in param_grad_dic.keys() and not param_grad_dic[k]:
# delete parameters that do not require gradient
del state_dict[k]
save_obj = {
"model": state_dict,
"optimizer": self.optimizer.state_dict(),
"config": self.config.to_dict(),
"scaler": self.scaler.state_dict() if self.scaler else None,
"epoch": cur_epoch,
}
save_to = os.path.join(
self.output_dir,
"checkpoint_{}.pth".format("best" if is_best else cur_epoch),
)
logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to))
torch.save(save_obj, save_to)
def _reload_best_model(self, model):
"""
Load the best checkpoint for evaluation.
"""
checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth")
logging.info("Loading checkpoint from {}.".format(checkpoint_path))
checkpoint = torch.load(checkpoint_path, map_location="cpu")
try:
model.load_state_dict(checkpoint["model"])
except RuntimeError as e:
logging.warning(
"""
Key mismatch when loading checkpoint. This is expected if only part of the model is saved.
Trying to load the model with strict=False.
"""
)
model.load_state_dict(checkpoint["model"], strict=False)
return model
def _load_checkpoint(self, url_or_filename):
"""
Resume from a checkpoint.
"""
if is_url(url_or_filename):
cached_file = download_cached_file(
url_or_filename, check_hash=False, progress=True
)
checkpoint = torch.load(cached_file, map_location=self.device)
elif os.path.isfile(url_or_filename):
checkpoint = torch.load(url_or_filename, map_location=self.device)
else:
raise RuntimeError("checkpoint url or path is invalid")
state_dict = checkpoint["model"]
message = self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False)
self.optimizer.load_state_dict(checkpoint["optimizer"])
if self.scaler and "scaler" in checkpoint:
self.scaler.load_state_dict(checkpoint["scaler"])
self.start_epoch = checkpoint["epoch"] + 1
print("resume the checkpoint")
logging.info("Resume checkpoint from {}".format(url_or_filename))
@main_process
def log_stats(self, stats, split_name):
if isinstance(stats, dict):
log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}}
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(log_stats) + "\n")
elif isinstance(stats, list):
pass
@main_process
def log_config(self):
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
f.write(json.dumps(self.config.to_dict(), indent=4) + "\n")
|