File size: 16,176 Bytes
2ada650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0df1b
2ada650
 
 
dc0df1b
 
 
 
 
 
 
 
 
2ada650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0df1b
2ada650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import torch
import webvtt
import os
import cv2 
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, eval_bleu,eval_cider,chat_gpt_eval
from minigpt4.conversation.conversation import CONV_VISION
from torchvision import transforms
import json
from tqdm import tqdm
import soundfile as sf
import argparse
import moviepy.editor as mp
import gradio as gr
from pytubefix import YouTube
import shutil
from PIL import Image
from moviepy.editor import VideoFileClip
from theme import minigptlv_style, custom_css,text_css

from huggingface_hub import login, hf_hub_download
hf_token = os.environ.get('HF_TKN')
login(token=hf_token)

hf_hub_download(
    repo_id='Vision-CAIR/MiniGPT4-Video',
    filename='video_llama_checkpoint_last.pth',
    local_dir='checkpoints',
    local_dir_use_symlinks=False,
)

import spaces

def create_video_grid(images, rows, cols,save_path):
    image_width, image_height = images[0].size
    grid_width = cols * image_width
    grid_height = rows * image_height

    new_image = Image.new("RGB", (grid_width, grid_height))

    for i in range(rows):
        for j in range(cols):
            index = i * cols + j
            if index < len(images):
                image = images[index]
                x_offset = j * image_width
                y_offset = i * image_height
                new_image.paste(image, (x_offset, y_offset))
    # new_image.save(save_path)
    return new_image

def prepare_input(vis_processor,video_path,subtitle_path,instruction):  
    cap = cv2.VideoCapture(video_path)
    if subtitle_path is not None: 
        # Load the VTT subtitle file
        vtt_file = webvtt.read(subtitle_path) 
        print("subtitle loaded successfully")  
        clip = VideoFileClip(video_path)
        total_num_frames = int(clip.duration * clip.fps)
        # print("Video duration = ",clip.duration)
        clip.close()
    else :
        # calculate the total number of frames in the video using opencv        
        total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
    if "mistral" in args.ckpt :
        max_images_length=90
        max_sub_len = 800
    else:
        max_images_length = 45
        max_sub_len = 400
    images = []
    frame_count = 0
    sampling_interval = int(total_num_frames / max_images_length)
    if sampling_interval == 0:
        sampling_interval = 1
    img_placeholder = ""
    subtitle_text_in_interval = ""
    history_subtitles = {}
    # raw_frames=[]
    number_of_words=0
    transform=transforms.Compose([
                transforms.ToPILImage(),
            ])
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        # Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
        # we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
        if subtitle_path is not None: 
            for subtitle in vtt_file:
                sub=subtitle.text.replace('\n',' ')
                if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
                    if not history_subtitles.get(sub,False):
                        subtitle_text_in_interval+=sub+" "
                    history_subtitles[sub]=True
                    break
        if frame_count % sampling_interval == 0:
            # raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
            frame = transform(frame[:,:,::-1]) # convert to RGB
            frame = vis_processor(frame)
            images.append(frame)
            img_placeholder += '<Img><ImageHere>'
            if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len: 
                img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
                number_of_words+=len(subtitle_text_in_interval.split(' '))
                subtitle_text_in_interval = ""
        frame_count += 1

        if len(images) >= max_images_length:
            break
    cap.release()
    cv2.destroyAllWindows()
    if len(images) == 0:
        # skip the video if no frame is extracted
        return None,None
    # video_grid_image=create_video_grid(raw_frames,8,len(raw_frames)//8,"concatenated.jpg")
    images = torch.stack(images)
    instruction = img_placeholder + '\n' + instruction
    return images,instruction
def extract_audio(video_path, audio_path):
    video_clip = mp.VideoFileClip(video_path)
    audio_clip = video_clip.audio
    audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
    
def generate_subtitles(video_path):
    video_id=video_path.split('/')[-1].split('.')[0]
    audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
    os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True)
    if existed_subtitles.get(video_id,False):
        return f"workspace/inference_subtitles/{video_id}"+'.vtt'
    try:
        extract_audio(video_path,audio_path)
        print("successfully extracted")
        os.system(f"whisper {audio_path}  --language English --model large --output_format vtt --output_dir workspace/inference_subtitles")
        # remove the audio file
        os.system(f"rm {audio_path}")
        print("subtitle successfully generated")  
        return f"workspace/inference_subtitles/{video_id}"+'.vtt'
    except Exception as e:
        print("error",e)
        print("error",video_path)
        return None
    
@spaces.GPU()
def run (video_path,instruction,model,vis_processor,gen_subtitles=True):
    if gen_subtitles:
        subtitle_path=generate_subtitles(video_path)
    else :
        subtitle_path=None
    prepared_images,prepared_instruction=prepare_input(vis_processor,video_path,subtitle_path,instruction)
    if prepared_images is None:
        return "Video cann't be open ,check the video path again"
    length=len(prepared_images)
    prepared_images=prepared_images.unsqueeze(0)
    conv = CONV_VISION.copy()
    conv.system = ""
    # if you want to make conversation comment the 2 lines above and make the conv is global variable
    conv.append_message(conv.roles[0], prepared_instruction)
    conv.append_message(conv.roles[1], None)
    prompt = [conv.get_prompt()]
    answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=2)
    # remove the subtitle file and the video file
    if subtitle_path:
        os.system(f"rm {subtitle_path}")
    #if video_path.split('.')[-1] == 'mp4' or video_path.split('.')[-1] == 'mkv' or video_path.split('.')[-1] == 'avi':
    #    os.system(f"rm {video_path}")
    return answers[0]

def run_single_image (image_path,instruction,model,vis_processor):
    image=Image.open(image_path)
    image = vis_processor(image)
    prepared_images=torch.stack([image])
    prepared_instruction='<Img><ImageHere>'+instruction
    length=len(prepared_images)
    prepared_images=prepared_images.unsqueeze(0)
    conv = CONV_VISION.copy()
    conv.system = ""
    # if you want to make conversation comment the 2 lines above and make the conv is global variable
    conv.append_message(conv.roles[0], prepared_instruction)
    conv.append_message(conv.roles[1], None)
    prompt = [conv.get_prompt()]
    answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=False, lengths=[length],num_beams=1)
    return answers[0]

def download_video(youtube_url, download_finish):
    video_id=youtube_url.split('v=')[-1].split('&')[0]
    # Create a YouTube object
    youtube = YouTube(youtube_url)
    # Get the best available video stream
    video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
    # if has_subtitles:
    # Download the video to the workspace folder
    print('Downloading video')
    video_stream.download(output_path="workspace",filename=f"{video_id}.mp4")
    print('Video downloaded successfully')
    processed_video_path= f"workspace/{video_id}.mp4"
    download_finish = gr.State(value=True)
    return processed_video_path, download_finish
 
def get_video_url(url,has_subtitles):
    # get video id from url
    video_id=url.split('v=')[-1].split('&')[0]
    # Create a YouTube object
    youtube = YouTube(url)
    # Get the best available video stream
    video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
    # if has_subtitles:
    # Download the video to the workspace folder
    print('Downloading video')
    video_stream.download(output_path="workspace",filename=f"{video_id}.mp4")
    print('Video downloaded successfully')
    return f"workspace/{video_id}.mp4"
    # else:
    #     return video_stream.url 
    
  
def get_arguments():
    parser = argparse.ArgumentParser(description="Inference parameters")
    parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml")
    parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint")
    parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens")
    parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model")
    parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha")
    parser.add_argument(
        "--options",
        nargs="+",
        help="override some settings in the used config, the key-value pair "
                "in xxx=yyy format will be merged into config file (deprecate), "
                "change to --cfg-options instead.",
    )
    return parser.parse_args()
args=get_arguments()
model, vis_processor = init_model(args)
conv = CONV_VISION.copy()
conv.system = ""
inference_subtitles_folder="workspace/inference_subtitles"
os.makedirs(inference_subtitles_folder,exist_ok=True)
existed_subtitles={}
for sub in os.listdir(inference_subtitles_folder):
    existed_subtitles[sub.split('.')[0]]=True

def gradio_demo_local(video_path,has_sub,instruction):
    pred=run(video_path,instruction,model,vis_processor,gen_subtitles=has_sub)
    return pred

def gradio_demo_youtube(youtube_url,has_sub,instruction):
    video_path=get_video_url(youtube_url,has_sub)
    pred=run(video_path,instruction,model,vis_processor,gen_subtitles=has_sub)
    return pred
    
def use_example(url,has_sub_1,q):
    # set the youtube link and the question with the example values
    youtube_link.value=url
    has_subtitles.value=has_sub_1
    question.value=q
    

title = """<h1 align="center">MiniGPT4-video 🎞️🍿</h1>"""
description = """<h5>This is the demo of MiniGPT4-video Model.</h5>"""
project_page = """<p><a href='https://vision-cair.github.io/MiniGPT4-video/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
code_link="""<p><a href='https://github.com/Vision-CAIR/MiniGPT4-video'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p>"""
paper_link="""<p><a href=''><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>"""
#video_path=""
with gr.Blocks(title="MiniGPT4-video 🎞️🍿",css=text_css ) as demo :
    # with gr.Row():
    #     with gr.Column(scale=2):
    gr.Markdown(title)
    gr.Markdown(description)
        # gr.Image("repo_imgs/Designer_2_new.jpeg",scale=1,show_download_button=False,show_label=False)
    # with gr.Row():
    #     gr.Markdown(project_page)
    #     gr.Markdown(code_link)
    #     gr.Markdown(paper_link)
        
    with gr.Tab("Local videos"):
        # local_interface=gr.Interface(
        #     fn=gradio_demo_local,
        #     inputs=[gr.Video(sources=["upload"]),gr.Checkbox(label='Use subtitles'),gr.Textbox(label="Write any Question")],
        #     outputs=["text",
        #             ],
            
        #     # title="<h2>Local videos</h2>",
        #     description="Upload your videos with length from one to two minutes",
        #     examples=[
        #         ["example_videos/sample_demo_1.mp4", True, "Why is this video funny"],
        #         ["example_videos/sample_demo_2.mp4", False, "Generate a creative advertisement for this product."],
        #         ["example_videos/sample_demo_3.mp4", False, "Write a poem inspired by this video."],
        #     ],
        #     css=custom_css,  # Apply custom CSS
        #     allow_flagging='auto'
        # )
        with gr.Row():
            with gr.Column():
                video_player_local = gr.Video(sources=["upload"])
                question_local = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
                has_subtitles_local = gr.Checkbox(label="Use subtitles", value=True)
                process_button_local = gr.Button("Answer the Question (QA)")
                
            with gr.Column():
                answer_local=gr.Text("Answer will be here",label="MiniGPT4-video Answer")
        
        process_button_local.click(fn=gradio_demo_local, inputs=[video_player_local, has_subtitles_local, question_local], outputs=[answer_local])
        
    with gr.Tab("Youtube videos"):
        # youtube_interface=gr.Interface(
        #     fn=gradio_demo_youtube,
        #     inputs=[gr.Textbox(label="Enter the youtube link"),gr.Checkbox(label='Use subtitles'),gr.Textbox(label="Write any Question")],
        #     outputs=["text",
        #             ],
        #     # title="<h2>YouTube videos</h2>",
        #     description="Videos length should be from one to two minutes",
        #     examples=[
        #         ["https://www.youtube.com/watch?v=8kyg5u6o21k", True, "What happens in this video?"],
        #         ["https://www.youtube.com/watch?v=zWfX5jeF6k4", True, "what is the main idea in this video?"],
        #         ["https://www.youtube.com/watch?v=W5PRZuaQ3VM", True, "Inspired by this video content suggest a creative advertisement about the same content."],
        #         ["https://www.youtube.com/watch?v=W8jcenQDXYg", True, "Describe what happens in this video."],
        #         ["https://www.youtube.com/watch?v=u3ybWiEUaUU", True, "what is creative in this video ?"],
        #         ["https://www.youtube.com/watch?v=nEwfSZfz7pw", True, "What Monica did in this video ?"],
        #     ],
        #     css=custom_css,  # Apply custom CSS
        #     allow_flagging='auto',
        # )
        with gr.Row():
            with gr.Column():
                youtube_link = gr.Textbox(label="Enter the youtube link", placeholder="Paste YouTube URL here")
                video_player = gr.Video(autoplay=False)
                download_finish = gr.State(value=False)
                youtube_link.change(
                    fn=download_video,
                    inputs=[youtube_link, download_finish], 
                    outputs=[video_player, download_finish]
                )
                question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
                has_subtitles = gr.Checkbox(label="Use subtitles", value=True)
                process_button = gr.Button("Answer the Question (QA)")
                
            with gr.Column():
                answer=gr.Text("Answer will be here",label="MiniGPT4-video Answer")
        
        process_button.click(fn=gradio_demo_youtube, inputs=[youtube_link, has_subtitles, question], outputs=[answer])
        ## Add examples to make the demo more interactive and user-friendly
        # with gr.Row():
        #     url_1=gr.Text("https://www.youtube.com/watch?v=8kyg5u6o21k")
        #     has_sub_1=True
        #     q_1=gr.Text("What happens in this video?")
        #     # add button to change the youtube link and the question with the example values
        #     use_example_1_btn=gr.Button("Use this example")
        #     use_example_1_btn.click(use_example,inputs=[url_1,has_sub_1,q_1])
            
        


if __name__ == "__main__":
    demo.queue(max_size=10).launch(share=False,show_error=True, show_api=False)