Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,176 Bytes
2ada650 dc0df1b 2ada650 dc0df1b 2ada650 dc0df1b 2ada650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import torch
import webvtt
import os
import cv2
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, eval_bleu,eval_cider,chat_gpt_eval
from minigpt4.conversation.conversation import CONV_VISION
from torchvision import transforms
import json
from tqdm import tqdm
import soundfile as sf
import argparse
import moviepy.editor as mp
import gradio as gr
from pytubefix import YouTube
import shutil
from PIL import Image
from moviepy.editor import VideoFileClip
from theme import minigptlv_style, custom_css,text_css
from huggingface_hub import login, hf_hub_download
hf_token = os.environ.get('HF_TKN')
login(token=hf_token)
hf_hub_download(
repo_id='Vision-CAIR/MiniGPT4-Video',
filename='video_llama_checkpoint_last.pth',
local_dir='checkpoints',
local_dir_use_symlinks=False,
)
import spaces
def create_video_grid(images, rows, cols,save_path):
image_width, image_height = images[0].size
grid_width = cols * image_width
grid_height = rows * image_height
new_image = Image.new("RGB", (grid_width, grid_height))
for i in range(rows):
for j in range(cols):
index = i * cols + j
if index < len(images):
image = images[index]
x_offset = j * image_width
y_offset = i * image_height
new_image.paste(image, (x_offset, y_offset))
# new_image.save(save_path)
return new_image
def prepare_input(vis_processor,video_path,subtitle_path,instruction):
cap = cv2.VideoCapture(video_path)
if subtitle_path is not None:
# Load the VTT subtitle file
vtt_file = webvtt.read(subtitle_path)
print("subtitle loaded successfully")
clip = VideoFileClip(video_path)
total_num_frames = int(clip.duration * clip.fps)
# print("Video duration = ",clip.duration)
clip.close()
else :
# calculate the total number of frames in the video using opencv
total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if "mistral" in args.ckpt :
max_images_length=90
max_sub_len = 800
else:
max_images_length = 45
max_sub_len = 400
images = []
frame_count = 0
sampling_interval = int(total_num_frames / max_images_length)
if sampling_interval == 0:
sampling_interval = 1
img_placeholder = ""
subtitle_text_in_interval = ""
history_subtitles = {}
# raw_frames=[]
number_of_words=0
transform=transforms.Compose([
transforms.ToPILImage(),
])
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle
# we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds
if subtitle_path is not None:
for subtitle in vtt_file:
sub=subtitle.text.replace('\n',' ')
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval:
if not history_subtitles.get(sub,False):
subtitle_text_in_interval+=sub+" "
history_subtitles[sub]=True
break
if frame_count % sampling_interval == 0:
# raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB)))
frame = transform(frame[:,:,::-1]) # convert to RGB
frame = vis_processor(frame)
images.append(frame)
img_placeholder += '<Img><ImageHere>'
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len:
img_placeholder+=f'<Cap>{subtitle_text_in_interval}'
number_of_words+=len(subtitle_text_in_interval.split(' '))
subtitle_text_in_interval = ""
frame_count += 1
if len(images) >= max_images_length:
break
cap.release()
cv2.destroyAllWindows()
if len(images) == 0:
# skip the video if no frame is extracted
return None,None
# video_grid_image=create_video_grid(raw_frames,8,len(raw_frames)//8,"concatenated.jpg")
images = torch.stack(images)
instruction = img_placeholder + '\n' + instruction
return images,instruction
def extract_audio(video_path, audio_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = video_clip.audio
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k")
def generate_subtitles(video_path):
video_id=video_path.split('/')[-1].split('.')[0]
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3'
os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True)
if existed_subtitles.get(video_id,False):
return f"workspace/inference_subtitles/{video_id}"+'.vtt'
try:
extract_audio(video_path,audio_path)
print("successfully extracted")
os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles")
# remove the audio file
os.system(f"rm {audio_path}")
print("subtitle successfully generated")
return f"workspace/inference_subtitles/{video_id}"+'.vtt'
except Exception as e:
print("error",e)
print("error",video_path)
return None
@spaces.GPU()
def run (video_path,instruction,model,vis_processor,gen_subtitles=True):
if gen_subtitles:
subtitle_path=generate_subtitles(video_path)
else :
subtitle_path=None
prepared_images,prepared_instruction=prepare_input(vis_processor,video_path,subtitle_path,instruction)
if prepared_images is None:
return "Video cann't be open ,check the video path again"
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=2)
# remove the subtitle file and the video file
if subtitle_path:
os.system(f"rm {subtitle_path}")
#if video_path.split('.')[-1] == 'mp4' or video_path.split('.')[-1] == 'mkv' or video_path.split('.')[-1] == 'avi':
# os.system(f"rm {video_path}")
return answers[0]
def run_single_image (image_path,instruction,model,vis_processor):
image=Image.open(image_path)
image = vis_processor(image)
prepared_images=torch.stack([image])
prepared_instruction='<Img><ImageHere>'+instruction
length=len(prepared_images)
prepared_images=prepared_images.unsqueeze(0)
conv = CONV_VISION.copy()
conv.system = ""
# if you want to make conversation comment the 2 lines above and make the conv is global variable
conv.append_message(conv.roles[0], prepared_instruction)
conv.append_message(conv.roles[1], None)
prompt = [conv.get_prompt()]
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=False, lengths=[length],num_beams=1)
return answers[0]
def download_video(youtube_url, download_finish):
video_id=youtube_url.split('v=')[-1].split('&')[0]
# Create a YouTube object
youtube = YouTube(youtube_url)
# Get the best available video stream
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
# if has_subtitles:
# Download the video to the workspace folder
print('Downloading video')
video_stream.download(output_path="workspace",filename=f"{video_id}.mp4")
print('Video downloaded successfully')
processed_video_path= f"workspace/{video_id}.mp4"
download_finish = gr.State(value=True)
return processed_video_path, download_finish
def get_video_url(url,has_subtitles):
# get video id from url
video_id=url.split('v=')[-1].split('&')[0]
# Create a YouTube object
youtube = YouTube(url)
# Get the best available video stream
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first()
# if has_subtitles:
# Download the video to the workspace folder
print('Downloading video')
video_stream.download(output_path="workspace",filename=f"{video_id}.mp4")
print('Video downloaded successfully')
return f"workspace/{video_id}.mp4"
# else:
# return video_stream.url
def get_arguments():
parser = argparse.ArgumentParser(description="Inference parameters")
parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml")
parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint")
parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens")
parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model")
parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
return parser.parse_args()
args=get_arguments()
model, vis_processor = init_model(args)
conv = CONV_VISION.copy()
conv.system = ""
inference_subtitles_folder="workspace/inference_subtitles"
os.makedirs(inference_subtitles_folder,exist_ok=True)
existed_subtitles={}
for sub in os.listdir(inference_subtitles_folder):
existed_subtitles[sub.split('.')[0]]=True
def gradio_demo_local(video_path,has_sub,instruction):
pred=run(video_path,instruction,model,vis_processor,gen_subtitles=has_sub)
return pred
def gradio_demo_youtube(youtube_url,has_sub,instruction):
video_path=get_video_url(youtube_url,has_sub)
pred=run(video_path,instruction,model,vis_processor,gen_subtitles=has_sub)
return pred
def use_example(url,has_sub_1,q):
# set the youtube link and the question with the example values
youtube_link.value=url
has_subtitles.value=has_sub_1
question.value=q
title = """<h1 align="center">MiniGPT4-video 🎞️🍿</h1>"""
description = """<h5>This is the demo of MiniGPT4-video Model.</h5>"""
project_page = """<p><a href='https://vision-cair.github.io/MiniGPT4-video/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
code_link="""<p><a href='https://github.com/Vision-CAIR/MiniGPT4-video'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p>"""
paper_link="""<p><a href=''><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>"""
#video_path=""
with gr.Blocks(title="MiniGPT4-video 🎞️🍿",css=text_css ) as demo :
# with gr.Row():
# with gr.Column(scale=2):
gr.Markdown(title)
gr.Markdown(description)
# gr.Image("repo_imgs/Designer_2_new.jpeg",scale=1,show_download_button=False,show_label=False)
# with gr.Row():
# gr.Markdown(project_page)
# gr.Markdown(code_link)
# gr.Markdown(paper_link)
with gr.Tab("Local videos"):
# local_interface=gr.Interface(
# fn=gradio_demo_local,
# inputs=[gr.Video(sources=["upload"]),gr.Checkbox(label='Use subtitles'),gr.Textbox(label="Write any Question")],
# outputs=["text",
# ],
# # title="<h2>Local videos</h2>",
# description="Upload your videos with length from one to two minutes",
# examples=[
# ["example_videos/sample_demo_1.mp4", True, "Why is this video funny"],
# ["example_videos/sample_demo_2.mp4", False, "Generate a creative advertisement for this product."],
# ["example_videos/sample_demo_3.mp4", False, "Write a poem inspired by this video."],
# ],
# css=custom_css, # Apply custom CSS
# allow_flagging='auto'
# )
with gr.Row():
with gr.Column():
video_player_local = gr.Video(sources=["upload"])
question_local = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
has_subtitles_local = gr.Checkbox(label="Use subtitles", value=True)
process_button_local = gr.Button("Answer the Question (QA)")
with gr.Column():
answer_local=gr.Text("Answer will be here",label="MiniGPT4-video Answer")
process_button_local.click(fn=gradio_demo_local, inputs=[video_player_local, has_subtitles_local, question_local], outputs=[answer_local])
with gr.Tab("Youtube videos"):
# youtube_interface=gr.Interface(
# fn=gradio_demo_youtube,
# inputs=[gr.Textbox(label="Enter the youtube link"),gr.Checkbox(label='Use subtitles'),gr.Textbox(label="Write any Question")],
# outputs=["text",
# ],
# # title="<h2>YouTube videos</h2>",
# description="Videos length should be from one to two minutes",
# examples=[
# ["https://www.youtube.com/watch?v=8kyg5u6o21k", True, "What happens in this video?"],
# ["https://www.youtube.com/watch?v=zWfX5jeF6k4", True, "what is the main idea in this video?"],
# ["https://www.youtube.com/watch?v=W5PRZuaQ3VM", True, "Inspired by this video content suggest a creative advertisement about the same content."],
# ["https://www.youtube.com/watch?v=W8jcenQDXYg", True, "Describe what happens in this video."],
# ["https://www.youtube.com/watch?v=u3ybWiEUaUU", True, "what is creative in this video ?"],
# ["https://www.youtube.com/watch?v=nEwfSZfz7pw", True, "What Monica did in this video ?"],
# ],
# css=custom_css, # Apply custom CSS
# allow_flagging='auto',
# )
with gr.Row():
with gr.Column():
youtube_link = gr.Textbox(label="Enter the youtube link", placeholder="Paste YouTube URL here")
video_player = gr.Video(autoplay=False)
download_finish = gr.State(value=False)
youtube_link.change(
fn=download_video,
inputs=[youtube_link, download_finish],
outputs=[video_player, download_finish]
)
question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?")
has_subtitles = gr.Checkbox(label="Use subtitles", value=True)
process_button = gr.Button("Answer the Question (QA)")
with gr.Column():
answer=gr.Text("Answer will be here",label="MiniGPT4-video Answer")
process_button.click(fn=gradio_demo_youtube, inputs=[youtube_link, has_subtitles, question], outputs=[answer])
## Add examples to make the demo more interactive and user-friendly
# with gr.Row():
# url_1=gr.Text("https://www.youtube.com/watch?v=8kyg5u6o21k")
# has_sub_1=True
# q_1=gr.Text("What happens in this video?")
# # add button to change the youtube link and the question with the example values
# use_example_1_btn=gr.Button("Use this example")
# use_example_1_btn.click(use_example,inputs=[url_1,has_sub_1,q_1])
if __name__ == "__main__":
demo.queue(max_size=10).launch(share=False,show_error=True, show_api=False)
|