Spaces:
Runtime error
Runtime error
File size: 10,923 Bytes
be10055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
'''
use this command in terminal to run the evaluation script
torchrun --master-port 8888 --nproc_per_node 1 eval_scripts/model_evaluation.py --cfg-path eval_configs/minigptv2_benchmark_evaluation.yaml --dataset
'''
import sys
sys.path.append('.')
import os
import re
import json
import argparse
from collections import defaultdict
import random
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from minigpt4.common.config import Config
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, computeIoU
from minigpt4.conversation.conversation import CONV_VISION_minigptv2
from minigpt4.datasets.datasets.mimic_cxr_dataset import evalMIMICDataset, evalDetectMimicDataset
from minigpt4.datasets.datasets.radvqa_dataset import evalRadVQADataset
from minigpt4.datasets.datasets.nlst_dataset import eval_NLST_Dataset
from minigpt4.datasets.datasets.rsna_dataset import evalRSNADataset
from minigpt4.datasets.datasets.SLAKE_dataset import evalSLAKEDataset
#import cleaning classes
from eval_scripts.clean_json import clean_mimic_json, clean_vqa_json, clean_detection_json
from eval_scripts.metrics import MIMIC_BERT_Sim, VQA_BERT_Sim, average_iou
def list_of_str(arg):
return list(map(str, arg.split(',')))
parser = eval_parser()
parser.add_argument("--dataset", type=list_of_str, help="dataset to evaluate")
args = parser.parse_args()
cfg = Config(args)
model, vis_processor = init_model(args)
model.eval()
CONV_VISION = CONV_VISION_minigptv2
conv_temp = CONV_VISION.copy()
conv_temp.system = ""
model.eval()
save_path = cfg.run_cfg.save_path
def process_mimic_dataset():
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
with open((eval_file_path), 'r') as f:
mimic = json.load(f)
data = evalMIMICDataset(mimic, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
for images, questions, img_ids in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp) # warp the texts with conversation template
answers = model.generate(images, texts, max_new_tokens=max_new_tokens, do_sample=False)
for answer, img_id, question in zip(answers, img_ids, questions):
minigpt4_predict[img_id].append(answer)
file_save_path = os.path.join(save_path,"MIMIC_inference_results_stage3.json")
with open(file_save_path,'w') as f:
json.dump(minigpt4_predict, f)
clean_mimic_json(file_save_path, file_save_path)
# csv file path to save the BERT results per each case
output_csv_path = '/miniGPT-Med/metric_results/bert_similarity_scores.csv'
# in MIMIC_BERT_Sim add the path of the ground_truth then the path of the inference result
average_similarity = MIMIC_BERT_Sim(eval_file_path, file_save_path, output_csv_path)
#print the average BERT_Sim
print("Average BERT Similarity:", average_similarity)
def process_vqa_dataset():
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
with open((eval_file_path), 'r') as f:
radVQA = json.load(f)
data = evalRadVQADataset(radVQA, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
for images, questions, img_ids in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp) # warp the texts with conversation template
answers = model.generate(images, texts, max_new_tokens=max_new_tokens, do_sample=False)
for answer, img_id, question in zip(answers, img_ids, questions):
minigpt4_predict[img_id].append({"key":img_ids,"question": question.replace("[vqa]", "").strip() , "answer": answer})
file_save_path = os.path.join(save_path,"radVQA_inference_results.json")
output_csv_path = '/miniGPT-Med/BERT_Sim_results/vqa_bert_similarity_scores.csv'
with open(file_save_path,'w') as f:
json.dump(minigpt4_predict, f)
clean_vqa_json(file_save_path, file_save_path)
VQA_BERT_Sim(eval_file_path, file_save_path, output_csv_path)
def process_nlst_dataset():
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
with open((eval_file_path), 'r') as f:
nlst = json.load(f)
data = eval_NLST_Dataset(nlst, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
resamples = []
for images, questions, img_ids in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp)
answers = model.generate(images, texts, max_new_tokens=max_new_tokens, do_sample=False)
for answer, img_id, question in zip(answers, img_ids, questions):
# answer = answer.replace("<unk>","").replace(" ","").strip()
pattern = r'\{<\d{1,2}><\d{1,2}><\d{1,2}><\d{1,2}>\}'
minigpt4_predict[img_id].append(answer)
file_save_path = os.path.join(save_path,"NLST_inference_result.json")
with open(file_save_path,'w') as f:
json.dump(minigpt4_predict, f)
csv_pth = os.path.join(save_path,"NLST_IoU_results.csv")
clean_detection_json(file_save_path,file_save_path)
average_iou(eval_file_path, file_save_path, 512, 100, "NLST", csv_pth)
def process_rsna_dataset():
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
print(eval_file_path)
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
print("----config----")
with open((eval_file_path), 'r') as f:
nlst = json.load(f)
data = evalRSNADataset(nlst, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
resamples = []
for images, questions, img_ids in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp)
answers = model.generate(images, texts, max_new_tokens=max_new_tokens, do_sample=False)
for answer, img_id, question in zip(answers, img_ids, questions):
# answer = answer.replace("<unk>","").replace(" ","").strip()
pattern = r'\{<\d{1,2}><\d{1,2}><\d{1,2}><\d{1,2}>\}'
minigpt4_predict[img_id].append(answer)
print(img_id)
print(answer)
file_save_path = os.path.join(save_path,"RSNA_inference_result.json")
with open(file_save_path,'w') as f:
json.dump(minigpt4_predict, f)
csv_pth = os.path.join(save_path,"RSNA_IoU_results.csv")
clean_detection_json(file_save_path,file_save_path)
average_iou(eval_file_path, file_save_path, 1024, 100, "rsna", csv_pth)
def process_detect_mimic():
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
with open((eval_file_path), 'r') as f:
nlst = json.load(f)
data = evalDetectMimicDataset(nlst, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
resamples = []
for images, questions, img_ids in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp)
answers = model.generate(images, texts, max_new_tokens=max_new_tokens, do_sample=False)
for answer, img_id, question in zip(answers, img_ids, questions):
pattern = r'\{<\d{1,2}><\d{1,2}><\d{1,2}><\d{1,2}>\}'
minigpt4_predict[img_id].append(answer)
file_save_path = os.path.join(save_path,"Detect_MIMIC_inference_result.json")
with open(file_save_path,'w') as f:
json.dump(minigpt4_predict, f)
csv_pth = os.path.join(save_path,"MIMIC_IoU_results.csv")
clean_detection_json(file_save_path,file_save_path)
average_iou(eval_file_path, file_save_path, "to be specified soon", 100, "MIMIC", csv_pth)
def process_SLAKE_dataset():
eval_file_path = cfg.evaluation_datasets_cfg[dataset]["eval_file_path"]
img_path = cfg.evaluation_datasets_cfg[dataset]["img_path"]
batch_size = cfg.evaluation_datasets_cfg[dataset]["batch_size"]
max_new_tokens = cfg.evaluation_datasets_cfg[dataset]["max_new_tokens"]
with open((eval_file_path), 'r') as f:
SLAKE = json.load(f)
data = evalSLAKEDataset(SLAKE, vis_processor, img_path)
eval_dataloader = DataLoader(data, batch_size=batch_size, shuffle=False)
minigpt4_predict = defaultdict(list)
resamples = []
for images, questions, img_ids in tqdm(eval_dataloader):
texts = prepare_texts(questions, conv_temp)
answers = model.generate(images, texts, max_new_tokens=max_new_tokens, do_sample=False)
for answer, img_id, question in zip(answers, img_ids, questions):
# answer = answer.replace("<unk>","").replace(" ","").strip()
pattern = r'\{<\d{1,2}><\d{1,2}><\d{1,2}><\d{1,2}>\}'
minigpt4_predict[img_id].append(answer)
file_save_path = os.path.join(save_path,"SLAKE_inference_result.json")
with open(file_save_path,'w') as f:
json.dump(minigpt4_predict, f)
csv_pth = os.path.join(save_path,"SLAKE_IoU_results.csv")
clean_detection_json(file_save_path,file_save_path)
average_iou(eval_file_path, file_save_path, 100, 100, "SLAKE", csv_pth)
############################################################################
for dataset in args.dataset:
if dataset == 'mimic_cxr':
process_mimic_dataset()
elif dataset == 'radvqa':
process_vqa_dataset()
elif dataset == 'nlst':
process_nlst_dataset()
elif dataset == 'rsna':
process_rsna_dataset()
elif dataset == 'detect_mimic':
process_detect_mimic()
elif dataset == 'SLAKE':
process_SLAKE_dataset()
else:
print(f"Dataset '{dataset}' is not supported.") |