File size: 3,936 Bytes
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from abc import ABC, abstractmethod

import torch
import torch.nn as nn


class ProcessorWrapper:
    def __init__(
        self,
        transform,
        height=378,
        width=378,
        image_mean=[0.48145466, 0.4578275, 0.40821073],
    ):
        self._crop_size = {
            "height": height,
            "width": width,
        }
        self._transforms = transform
        # print(transform)
        self.image_mean = image_mean

    @property
    def crop_size(self):
        return self._crop_size

    def preprocess(self, image, return_tensors="pt"):
        # Ensure image is a PIL Image
        output = {}
        output["pixel_values"] = [self._transforms(image)]
        return output


class BaseVisionTower(nn.Module):
    def __init__(self, vision_tower_name, args, delay_load=False):
        super().__init__()

        self.is_loaded = False
        self.args = args

        self.vision_tower_name = vision_tower_name
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
        self.unfreeze_mm_vision_tower = getattr(args, "unfreeze_mm_vision_tower", False)
        self.delay_load = delay_load

    @abstractmethod
    def load_model(self, device_map=None):
        raise NotImplementedError("Subclasses must implement load_model")

    @abstractmethod
    def _forward(self, images):
        raise NotImplementedError("Subclasses must implement forward")

    def forward(self, images):
        if type(images) is list:
            image_features = [self._forward(image.unsqueeze(0)) for image in images]
        else:
            image_features = self._forward(images)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        # Dynamically infer the dtype from the first parameter, if not explicitly specified
        if hasattr(self.vision_tower, "dtype"):
            return self.vision_tower.dtype
        else:
            params = list(self.vision_tower.parameters())
            return (
                params[0].dtype if len(params) > 0 else torch.float32
            )  # Default to torch.float32 if no parameters

    @property
    def device(self):
        # Dynamically infer the device from the first parameter, if not explicitly specified
        if hasattr(self.vision_tower, "device"):
            return self.vision_tower.device
        else:
            params = list(self.vision_tower.parameters())
            return (
                params[0].device if len(params) > 0 else torch.device("cpu")
            )  # Default to CPU if no parameters

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        try:
            return self.config.hidden_size
        except:
            return self._hidden_size

    @property
    def image_size(self):  # resolution
        # return self.config.image_size
        try:
            return self.config.image_size
        except:
            return self._image_size

    @property
    def patch_size(self):
        # return self.config.patch_size
        try:
            return self.config.patch_size
        except:
            return self._patch_size

    @property
    def num_patches_per_side(self):
        if self._interp_size is not None:
            return int(self._interp_size**0.5)
        try:
            return self.image_size // self.patch_size
        except:
            return self._num_patches_per_side

    @property
    def num_patches(self):
        if self._interp_size is not None:
            return self._interp_size
        try:
            return self.num_patches_per_side**2
        except:
            return self._num_patches