File size: 16,195 Bytes
f395cf7
 
 
 
76277cf
f395cf7
 
76277cf
 
 
1453284
76277cf
1453284
 
76277cf
1453284
 
 
bcdf3c7
1453284
f395cf7
 
 
 
 
 
 
 
 
 
 
76277cf
 
 
 
 
 
 
 
bcdf3c7
 
76277cf
 
bcdf3c7
 
 
76277cf
 
bcdf3c7
 
76277cf
 
f395cf7
 
 
76277cf
 
 
 
bcdf3c7
76277cf
 
 
 
bcdf3c7
f395cf7
 
 
 
 
 
 
 
bcdf3c7
 
f395cf7
 
 
 
 
 
 
 
1453284
 
 
 
f395cf7
 
1453284
f395cf7
 
 
 
 
 
 
bcdf3c7
f395cf7
 
 
 
bcdf3c7
f395cf7
1453284
 
 
 
 
 
 
f395cf7
 
bcdf3c7
1453284
f395cf7
 
5542a6a
76277cf
 
 
 
bcdf3c7
 
 
 
 
 
 
 
 
 
 
f395cf7
76277cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f395cf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcdf3c7
 
 
 
f395cf7
 
 
5542a6a
f395cf7
 
76277cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f395cf7
76277cf
 
 
 
f395cf7
 
 
 
 
76277cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f395cf7
 
 
 
 
 
 
 
76277cf
f395cf7
5542a6a
 
f395cf7
76277cf
bcdf3c7
 
f395cf7
 
5542a6a
 
 
bcdf3c7
 
 
 
 
f395cf7
 
 
 
5542a6a
 
f395cf7
 
76277cf
 
 
 
 
f395cf7
76277cf
5542a6a
f395cf7
76277cf
 
 
 
 
 
 
 
f395cf7
76277cf
 
 
f395cf7
bcdf3c7
f395cf7
 
76277cf
5542a6a
 
76277cf
5542a6a
 
76277cf
933da9e
76277cf
 
 
 
5542a6a
 
 
933da9e
5542a6a
 
 
bcdf3c7
f395cf7
 
 
 
 
bcdf3c7
f395cf7
bcdf3c7
f395cf7
 
 
 
5542a6a
f395cf7
76277cf
 
 
 
 
f395cf7
 
 
 
5542a6a
76277cf
 
 
 
 
f395cf7
 
5542a6a
76277cf
 
 
 
 
f395cf7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Optional, Tuple
from periodictable import elements

# =========================
# Helpers & data utilities
# =========================
def to_float(x):
    """Coerce periodictable values (incl. uncertainties) to float; else NaN."""
    if x is None:
        return np.nan
    v = getattr(x, "nominal_value", x)
    try:
        return float(v)
    except Exception:
        return np.nan

NUMERIC_PROPS = [
    ("mass", "Atomic mass (u)"),
    ("density", "Density (g/cm^3)"),
    ("electronegativity", "Pauling electronegativity"),
    ("boiling_point", "Boiling point (K)"),
    ("melting_point", "Melting point (K)"),
    ("vdw_radius", "van der Waals radius (pm)"),
    ("covalent_radius", "Covalent radius (pm)"),
]

CURATED_FACTS: Dict[str, List[str]] = {
    "H": ["Lightest element; dominant in stars."],
    "He": ["Inert; used in cryogenics and balloons."],
    "Li": ["Key in Li-ion batteries."],
    "C": ["Same element → diamond vs graphite (allotropy)."],
    "N": ["~78% of Earth’s atmosphere (N₂)."],
    "O": ["~21% of air; crucial for respiration."],
    "Na": ["Violently reacts with water."],
    "Mg": ["Burns with bright white flame."],
    "Si": ["Semiconductor backbone."],
    "Cl": ["Disinfectant; elemental Cl₂ is toxic."],
    "Fe": ["Steel & blood (heme) MVP."],
    "Cu": ["Great conductor; green patina."],
    "Ag": ["Highest electrical conductivity."],
    "Au": ["Very unreactive; great for electronics/jewelry."],
    "Hg": ["Liquid metal at room temp; toxic."],
    "Pb": ["Dense; toxicity drove phase-outs."],
    "U": ["Nuclear fuel (U-235)."],
    "Pu": ["Man-made in quantity; nuclear uses."],
    "F": ["Most electronegative; extremely reactive."],
    "Ne": ["Classic red-orange glow tubes."],
    "Xe": ["HID lamps & flashes."],
}

GROUP_FACTS = {
    "alkali": "Alkali metal: very reactive; forms +1; reacts with water.",
    "alkaline-earth": "Alkaline earth metal: reactive; forms +2.",
    "transition": "Transition metal: variable oxidation states; often colored compounds.",
    "post-transition": "Post-transition metal: softer; lower melting than transition metals.",
    "metalloid": "Metalloid: between metals and nonmetals; often semiconductors.",
    "nonmetal": "Nonmetal: covalent chemistry; key biological roles.",
    "halogen": "Halogen: ns²np⁵; gains 1e⁻; forms salts.",
    "noble-gas": "Noble gas: ns²np⁶; inert, monatomic.",
    "lanthanide": "Lanthanide: rare earths; magnets/lasers/phosphors.",
    "actinide": "Actinide: radioactive; nuclear materials.",
}

def classify_category(el) -> str:
    try:
        if el.block == "s" and el.group == 1 and el.number != 1:
            return "alkali"
        if el.block == "s" and el.group == 2:
            return "alkaline-earth"
        if el.block == "d":
            return "transition"
        if el.block == "p" and el.group == 17:
            return "halogen"
        if el.block == "p" and el.group == 18:
            return "noble-gas"
        if el.block == "f" and 57 <= el.number <= 71:
            return "lanthanide"
        if el.block == "f" and 89 <= el.number <= 103:
            return "actinide"
        if el.block == "p" and not el.metallic:
            return "nonmetal"
        if el.block == "p" and el.metallic:
            return "post-transition"
    except Exception:
        pass
    return "post-transition" if getattr(el, "metallic", False) else "nonmetal"

def build_elements_df() -> pd.DataFrame:
    rows = []
    for Z in range(1, 119):
        el = elements[Z]
        if el is None:
            continue
        rows.append({
            "Z": el.number,
            "symbol": el.symbol,
            "name": el.name.title(),
            "period": getattr(el, "period", None),
            "group": getattr(el, "group", None),
            "block": getattr(el, "block", None),
            "mass": to_float(getattr(el, "mass", None)),
            "density": to_float(getattr(el, "density", None)),
            "electronegativity": to_float(getattr(el, "electronegativity", None)),
            "boiling_point": to_float(getattr(el, "boiling_point", None)),
            "melting_point": to_float(getattr(el, "melting_point", None)),
            "vdw_radius": to_float(getattr(el, "vdw_radius", None)),
            "covalent_radius": to_float(getattr(el, "covalent_radius", None)),
            "category": classify_category(el),
            "is_radioactive": bool(getattr(el, "radioactive", False)),
        })
    return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)

DF = build_elements_df()

# =========================
# Hard-coded periodic layout
# =========================
# Periods 1–7, groups 1–18; La/Ac shown in group 3; f-block split below.
GRID = [
    [1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 2],
    [3, 4, None, None, None, None, None, None, None, None, None, None, 5, 6, 7, 8, 9, 10],
    [11, 12, None, None, None, None, None, None, None, None, None, None, 13, 14, 15, 16, 17, 18],
    [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36],
    [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
    [55, 56, 57, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86],
    [87, 88, 89, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118],
]
LAN = list(range(58, 72))   # Ce..Lu
ACT = list(range(90, 104))  # Th..Lr

def find_pos_in_grid(Z:int) -> Tuple[Optional[int], Optional[int]]:
    for r in range(len(GRID)):
        for c in range(len(GRID[0])):
            if GRID[r][c] == Z:
                return (r+1, c+1)  # human-friendly (period, group)
    return (None, None)

# =========================
# Explanations
# =========================
def valence_pattern(period:int, group:int, block:str) -> str:
    if period is None or group is None or block is None:
        return "Valence pattern unavailable."
    n = period
    if block == "s":
        return f"{n}s¹" if group == 1 else f"{n}s²"
    if block == "p" and 13 <= group <= 18:
        p_e = group - 12  # 1..6
        return f"{n}{n}p^{p_e}"
    if block == "d":
        return f"{n-1}d^(1–10){n}s^(0–2) (incomplete d-subshell)"
    if block == "f":
        return f"{n-2}f^(1–14){n-1}d^(0–1){n}s² (f-block)"
    return "Valence pattern unavailable."

def explain_element(row:dict, Z:int) -> str:
    period, group = find_pos_in_grid(Z)
    block = row["block"]
    cat = row["category"]
    en = row["electronegativity"]
    dens = row["density"]

    lines = []
    # Valence / block logic
    lines.append(f"**Valence & block:** {valence_pattern(period, group, block)}; {cat.replace('-', ' ')}.")
    # Reactivity / tendencies
    if group == 1:
        lines.append("**Reactivity:** Group 1 (ns¹) → easily loses 1 e⁻ (forms +1), reacts strongly with water.")
    elif group == 2:
        lines.append("**Reactivity:** Group 2 (ns²) → tends to lose 2 e⁻ (forms +2).")
    elif group == 17:
        lines.append("**Reactivity:** Halogen (ns²np⁵) → tends to gain 1 e⁻; oxidizing; reactivity decreases down the group.")
    elif group == 18:
        lines.append("**Reactivity:** Noble gas (ns²np⁶) → filled shell, minimal reactivity.")
    elif block == "d":
        lines.append("**d-block behavior:** Partially filled d-orbitals → multiple oxidation states; often colored complexes.")
    # Property tie-ins
    if not pd.isna(en) and not pd.isna(row["period"]):
        same_period = DF[(DF["period"] == row["period"]) & (~DF["electronegativity"].isna())]
        if len(same_period):
            med = same_period["electronegativity"].median()
            qual = "higher-than-average" if en > med else "lower-than-average"
            lines.append(f"**Electronegativity:** {en:.2f} ({qual} within period {int(row['period'])}).")
    if not pd.isna(dens):
        lines.append(f"**Density:** {dens:g} g/cm³ — linked to atomic mass and packing typical for its category.")

    return "### Why it behaves this way\n" + "\n".join(f"- {t}" for t in lines)

# =========================
# Plotting (Matplotlib -> gr.Plot)
# =========================
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
    fig, ax = plt.subplots()
    ax.scatter(trend_df["Z"], trend_df[prop_key])
    sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
    if not sel.empty and not pd.isna(sel.values[0]):
        ax.scatter([Z], [sel.values[0]], s=80)
        ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
    ax.set_xlabel("Atomic number (Z)")
    ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
    ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
    fig.tight_layout()
    return fig

def plot_heatmap(property_key: str):
    prop_label = dict(NUMERIC_PROPS)[property_key]
    max_period, max_group = len(GRID), len(GRID[0])
    grid_vals = np.full((max_period, max_group), np.nan, dtype=float)
    for r in range(max_period):
        for c in range(max_group):
            z = GRID[r][c]
            if z is None:
                continue
            val = DF.loc[DF["Z"] == z, property_key].values[0]
            if not pd.isna(val):
                grid_vals[r, c] = float(val)

    if np.isnan(grid_vals).all():
        fig, ax = plt.subplots()
        ax.axis("off")
        ax.text(0.5, 0.5, f"No data for {prop_label}", ha="center", va="center", fontsize=12)
        fig.tight_layout()
        return fig

    masked = np.ma.masked_invalid(grid_vals)
    finite_vals = grid_vals[~np.isnan(grid_vals)]
    if finite_vals.size >= 2:
        vmin, vmax = np.nanpercentile(finite_vals, [5, 95])
    else:
        vmin, vmax = np.nanmin(finite_vals), np.nanmax(finite_vals)

    fig, ax = plt.subplots()
    im = ax.imshow(masked, origin="upper", aspect="auto", vmin=vmin, vmax=vmax)
    ax.set_xticks(range(max_group)); ax.set_xticklabels([str(i) for i in range(1, max_group + 1)])
    ax.set_yticks(range(max_period)); ax.set_yticklabels([str(i) for i in range(1, max_period + 1)])
    ax.set_xlabel("Group"); ax.set_ylabel("Period")
    ax.set_title(f"Periodic heatmap: {prop_label}")
    fig.colorbar(im, ax=ax, label=prop_label)
    fig.tight_layout()
    return fig

# =========================
# Core callbacks
# =========================
def compose_facts(row:dict, Z:int, show_expl:bool) -> str:
    symbol = row["symbol"]
    facts = []
    facts.extend(CURATED_FACTS.get(symbol, []))
    gf = GROUP_FACTS.get(row["category"], None)
    if gf:
        facts.append(gf)
    facts_text = "\n• ".join(["**Interesting facts:**"] + facts) if facts else ""
    if show_expl:
        expl = explain_element(row, Z)
        facts_text = (facts_text + "\n\n" if facts_text else "") + expl
    return facts_text if facts_text else "No fact on file—still cool though!"

def element_info(z_or_symbol: str, show_expl: bool):
    try:
        if z_or_symbol.isdigit():
            Z = int(z_or_symbol)
            _ = elements[Z]
        else:
            el = elements.symbol(z_or_symbol)
            Z = el.number
    except Exception:
        return f"Unknown element: {z_or_symbol}", "No data", None, None  # info, facts, fig, current_Z

    row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
    symbol = row["symbol"]

    def show(v):
        return v if (v is not None and not pd.isna(v)) else "—"

    props_lines = [
        f"{row['name']} ({symbol}), Z = {Z}",
        f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
        f"Group {row['group'] if row['group'] is not None else '—'}, "
        f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
        f"Atomic mass: {show(row['mass'])} u",
        f"Density: {show(row['density'])} g/cm³",
        f"Electronegativity: {show(row['electronegativity'])} (Pauling)",
        f"Melting point: {show(row['melting_point'])} K | Boiling point: {show(row['boiling_point'])} K",
        f"vdW radius: {show(row['vdw_radius'])} pm | Covalent radius: {show(row['covalent_radius'])} pm",
        f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
    ]
    info_text = "\n".join(props_lines)

    prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
    trend_df = DF[["Z", "symbol", prop_key]].dropna()
    fig = plot_trend(trend_df, prop_key, Z, symbol)

    facts_text = compose_facts(row, Z, show_expl)
    return info_text, facts_text, fig, Z

def handle_button_click(z: int, show_expl: bool):
    return element_info(str(z), show_expl)

def search_element(query: str, show_expl: bool):
    query = (query or "").strip()
    if not query:
        return gr.update(), gr.update(), gr.update(), gr.update()
    return element_info(query, show_expl)

def refresh_facts(current_Z: Optional[int], show_expl: bool):
    if current_Z is None:
        return gr.update()
    row = DF.loc[DF["Z"] == current_Z].iloc[0].to_dict()
    return compose_facts(row, int(current_Z), show_expl)

# =========================
# UI (Gradio 4.29.0)
# =========================
with gr.Blocks(title="Interactive Periodic Table") as demo:
    gr.Markdown("Click an element or search by symbol/name/atomic number.")

    with gr.Row():
        # Inspector & controls
        with gr.Column(scale=1):
            gr.Markdown("### Inspector")
            show_expl = gr.Checkbox(label="Show advanced explanation", value=False)
            search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
            info = gr.Textbox(label="Properties", lines=10, interactive=False)
            facts = gr.Markdown("Select an element to see facts and explanations.")
            trend = gr.Plot()
            current_Z = gr.State(value=None)

            search.submit(search_element, inputs=[search, show_expl], outputs=[info, facts, trend, current_Z])
            show_expl.change(refresh_facts, inputs=[current_Z, show_expl], outputs=[facts])

            gr.Markdown("### Trend heatmap")
            prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
            heat = gr.Plot()
            prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
            demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])

        # Main table
        with gr.Column(scale=2):
            gr.Markdown("### Main Table")
            with gr.Row():
                for g in range(1, 19):
                    gr.Markdown(f"**{g}**")
            for r in range(len(GRID)):
                with gr.Row():
                    for c in range(len(GRID[0])):
                        z = GRID[r][c]
                        if z is None:
                            gr.Button("", interactive=False)
                        else:
                            sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                            btn = gr.Button(sym)
                            btn.click(
                                handle_button_click,
                                inputs=[gr.Number(z, visible=False), show_expl],
                                outputs=[info, facts, trend, current_Z],
                            )

            gr.Markdown("### f-block (lanthanides & actinides)")
            with gr.Row():
                for z in LAN:
                    sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                    gr.Button(sym).click(
                        handle_button_click,
                        inputs=[gr.Number(z, visible=False), show_expl],
                        outputs=[info, facts, trend, current_Z],
                    )
            with gr.Row():
                for z in ACT:
                    sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
                    gr.Button(sym).click(
                        handle_button_click,
                        inputs=[gr.Number(z, visible=False), show_expl],
                        outputs=[info, facts, trend, current_Z],
                    )

if __name__ == "__main__":
    demo.launch()