Spaces:
Build error
Build error
File size: 16,195 Bytes
f395cf7 76277cf f395cf7 76277cf 1453284 76277cf 1453284 76277cf 1453284 bcdf3c7 1453284 f395cf7 76277cf bcdf3c7 76277cf bcdf3c7 76277cf bcdf3c7 76277cf f395cf7 76277cf bcdf3c7 76277cf bcdf3c7 f395cf7 bcdf3c7 f395cf7 1453284 f395cf7 1453284 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 1453284 f395cf7 bcdf3c7 1453284 f395cf7 5542a6a 76277cf bcdf3c7 f395cf7 76277cf f395cf7 bcdf3c7 f395cf7 5542a6a f395cf7 76277cf f395cf7 76277cf f395cf7 76277cf f395cf7 76277cf f395cf7 5542a6a f395cf7 76277cf bcdf3c7 f395cf7 5542a6a bcdf3c7 f395cf7 5542a6a f395cf7 76277cf f395cf7 76277cf 5542a6a f395cf7 76277cf f395cf7 76277cf f395cf7 bcdf3c7 f395cf7 76277cf 5542a6a 76277cf 5542a6a 76277cf 933da9e 76277cf 5542a6a 933da9e 5542a6a bcdf3c7 f395cf7 bcdf3c7 f395cf7 bcdf3c7 f395cf7 5542a6a f395cf7 76277cf f395cf7 5542a6a 76277cf f395cf7 5542a6a 76277cf f395cf7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Optional, Tuple
from periodictable import elements
# =========================
# Helpers & data utilities
# =========================
def to_float(x):
"""Coerce periodictable values (incl. uncertainties) to float; else NaN."""
if x is None:
return np.nan
v = getattr(x, "nominal_value", x)
try:
return float(v)
except Exception:
return np.nan
NUMERIC_PROPS = [
("mass", "Atomic mass (u)"),
("density", "Density (g/cm^3)"),
("electronegativity", "Pauling electronegativity"),
("boiling_point", "Boiling point (K)"),
("melting_point", "Melting point (K)"),
("vdw_radius", "van der Waals radius (pm)"),
("covalent_radius", "Covalent radius (pm)"),
]
CURATED_FACTS: Dict[str, List[str]] = {
"H": ["Lightest element; dominant in stars."],
"He": ["Inert; used in cryogenics and balloons."],
"Li": ["Key in Li-ion batteries."],
"C": ["Same element → diamond vs graphite (allotropy)."],
"N": ["~78% of Earth’s atmosphere (N₂)."],
"O": ["~21% of air; crucial for respiration."],
"Na": ["Violently reacts with water."],
"Mg": ["Burns with bright white flame."],
"Si": ["Semiconductor backbone."],
"Cl": ["Disinfectant; elemental Cl₂ is toxic."],
"Fe": ["Steel & blood (heme) MVP."],
"Cu": ["Great conductor; green patina."],
"Ag": ["Highest electrical conductivity."],
"Au": ["Very unreactive; great for electronics/jewelry."],
"Hg": ["Liquid metal at room temp; toxic."],
"Pb": ["Dense; toxicity drove phase-outs."],
"U": ["Nuclear fuel (U-235)."],
"Pu": ["Man-made in quantity; nuclear uses."],
"F": ["Most electronegative; extremely reactive."],
"Ne": ["Classic red-orange glow tubes."],
"Xe": ["HID lamps & flashes."],
}
GROUP_FACTS = {
"alkali": "Alkali metal: very reactive; forms +1; reacts with water.",
"alkaline-earth": "Alkaline earth metal: reactive; forms +2.",
"transition": "Transition metal: variable oxidation states; often colored compounds.",
"post-transition": "Post-transition metal: softer; lower melting than transition metals.",
"metalloid": "Metalloid: between metals and nonmetals; often semiconductors.",
"nonmetal": "Nonmetal: covalent chemistry; key biological roles.",
"halogen": "Halogen: ns²np⁵; gains 1e⁻; forms salts.",
"noble-gas": "Noble gas: ns²np⁶; inert, monatomic.",
"lanthanide": "Lanthanide: rare earths; magnets/lasers/phosphors.",
"actinide": "Actinide: radioactive; nuclear materials.",
}
def classify_category(el) -> str:
try:
if el.block == "s" and el.group == 1 and el.number != 1:
return "alkali"
if el.block == "s" and el.group == 2:
return "alkaline-earth"
if el.block == "d":
return "transition"
if el.block == "p" and el.group == 17:
return "halogen"
if el.block == "p" and el.group == 18:
return "noble-gas"
if el.block == "f" and 57 <= el.number <= 71:
return "lanthanide"
if el.block == "f" and 89 <= el.number <= 103:
return "actinide"
if el.block == "p" and not el.metallic:
return "nonmetal"
if el.block == "p" and el.metallic:
return "post-transition"
except Exception:
pass
return "post-transition" if getattr(el, "metallic", False) else "nonmetal"
def build_elements_df() -> pd.DataFrame:
rows = []
for Z in range(1, 119):
el = elements[Z]
if el is None:
continue
rows.append({
"Z": el.number,
"symbol": el.symbol,
"name": el.name.title(),
"period": getattr(el, "period", None),
"group": getattr(el, "group", None),
"block": getattr(el, "block", None),
"mass": to_float(getattr(el, "mass", None)),
"density": to_float(getattr(el, "density", None)),
"electronegativity": to_float(getattr(el, "electronegativity", None)),
"boiling_point": to_float(getattr(el, "boiling_point", None)),
"melting_point": to_float(getattr(el, "melting_point", None)),
"vdw_radius": to_float(getattr(el, "vdw_radius", None)),
"covalent_radius": to_float(getattr(el, "covalent_radius", None)),
"category": classify_category(el),
"is_radioactive": bool(getattr(el, "radioactive", False)),
})
return pd.DataFrame(rows).sort_values("Z").reset_index(drop=True)
DF = build_elements_df()
# =========================
# Hard-coded periodic layout
# =========================
# Periods 1–7, groups 1–18; La/Ac shown in group 3; f-block split below.
GRID = [
[1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 2],
[3, 4, None, None, None, None, None, None, None, None, None, None, 5, 6, 7, 8, 9, 10],
[11, 12, None, None, None, None, None, None, None, None, None, None, 13, 14, 15, 16, 17, 18],
[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36],
[37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54],
[55, 56, 57, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86],
[87, 88, 89, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118],
]
LAN = list(range(58, 72)) # Ce..Lu
ACT = list(range(90, 104)) # Th..Lr
def find_pos_in_grid(Z:int) -> Tuple[Optional[int], Optional[int]]:
for r in range(len(GRID)):
for c in range(len(GRID[0])):
if GRID[r][c] == Z:
return (r+1, c+1) # human-friendly (period, group)
return (None, None)
# =========================
# Explanations
# =========================
def valence_pattern(period:int, group:int, block:str) -> str:
if period is None or group is None or block is None:
return "Valence pattern unavailable."
n = period
if block == "s":
return f"{n}s¹" if group == 1 else f"{n}s²"
if block == "p" and 13 <= group <= 18:
p_e = group - 12 # 1..6
return f"{n}s²{n}p^{p_e}"
if block == "d":
return f"{n-1}d^(1–10){n}s^(0–2) (incomplete d-subshell)"
if block == "f":
return f"{n-2}f^(1–14){n-1}d^(0–1){n}s² (f-block)"
return "Valence pattern unavailable."
def explain_element(row:dict, Z:int) -> str:
period, group = find_pos_in_grid(Z)
block = row["block"]
cat = row["category"]
en = row["electronegativity"]
dens = row["density"]
lines = []
# Valence / block logic
lines.append(f"**Valence & block:** {valence_pattern(period, group, block)}; {cat.replace('-', ' ')}.")
# Reactivity / tendencies
if group == 1:
lines.append("**Reactivity:** Group 1 (ns¹) → easily loses 1 e⁻ (forms +1), reacts strongly with water.")
elif group == 2:
lines.append("**Reactivity:** Group 2 (ns²) → tends to lose 2 e⁻ (forms +2).")
elif group == 17:
lines.append("**Reactivity:** Halogen (ns²np⁵) → tends to gain 1 e⁻; oxidizing; reactivity decreases down the group.")
elif group == 18:
lines.append("**Reactivity:** Noble gas (ns²np⁶) → filled shell, minimal reactivity.")
elif block == "d":
lines.append("**d-block behavior:** Partially filled d-orbitals → multiple oxidation states; often colored complexes.")
# Property tie-ins
if not pd.isna(en) and not pd.isna(row["period"]):
same_period = DF[(DF["period"] == row["period"]) & (~DF["electronegativity"].isna())]
if len(same_period):
med = same_period["electronegativity"].median()
qual = "higher-than-average" if en > med else "lower-than-average"
lines.append(f"**Electronegativity:** {en:.2f} ({qual} within period {int(row['period'])}).")
if not pd.isna(dens):
lines.append(f"**Density:** {dens:g} g/cm³ — linked to atomic mass and packing typical for its category.")
return "### Why it behaves this way\n" + "\n".join(f"- {t}" for t in lines)
# =========================
# Plotting (Matplotlib -> gr.Plot)
# =========================
def plot_trend(trend_df: pd.DataFrame, prop_key: str, Z: int, symbol: str):
fig, ax = plt.subplots()
ax.scatter(trend_df["Z"], trend_df[prop_key])
sel = trend_df.loc[trend_df["Z"] == Z, prop_key]
if not sel.empty and not pd.isna(sel.values[0]):
ax.scatter([Z], [sel.values[0]], s=80)
ax.text(Z, sel.values[0], symbol, ha="center", va="bottom")
ax.set_xlabel("Atomic number (Z)")
ax.set_ylabel(dict(NUMERIC_PROPS)[prop_key])
ax.set_title(f"{dict(NUMERIC_PROPS)[prop_key]} across the periodic table")
fig.tight_layout()
return fig
def plot_heatmap(property_key: str):
prop_label = dict(NUMERIC_PROPS)[property_key]
max_period, max_group = len(GRID), len(GRID[0])
grid_vals = np.full((max_period, max_group), np.nan, dtype=float)
for r in range(max_period):
for c in range(max_group):
z = GRID[r][c]
if z is None:
continue
val = DF.loc[DF["Z"] == z, property_key].values[0]
if not pd.isna(val):
grid_vals[r, c] = float(val)
if np.isnan(grid_vals).all():
fig, ax = plt.subplots()
ax.axis("off")
ax.text(0.5, 0.5, f"No data for {prop_label}", ha="center", va="center", fontsize=12)
fig.tight_layout()
return fig
masked = np.ma.masked_invalid(grid_vals)
finite_vals = grid_vals[~np.isnan(grid_vals)]
if finite_vals.size >= 2:
vmin, vmax = np.nanpercentile(finite_vals, [5, 95])
else:
vmin, vmax = np.nanmin(finite_vals), np.nanmax(finite_vals)
fig, ax = plt.subplots()
im = ax.imshow(masked, origin="upper", aspect="auto", vmin=vmin, vmax=vmax)
ax.set_xticks(range(max_group)); ax.set_xticklabels([str(i) for i in range(1, max_group + 1)])
ax.set_yticks(range(max_period)); ax.set_yticklabels([str(i) for i in range(1, max_period + 1)])
ax.set_xlabel("Group"); ax.set_ylabel("Period")
ax.set_title(f"Periodic heatmap: {prop_label}")
fig.colorbar(im, ax=ax, label=prop_label)
fig.tight_layout()
return fig
# =========================
# Core callbacks
# =========================
def compose_facts(row:dict, Z:int, show_expl:bool) -> str:
symbol = row["symbol"]
facts = []
facts.extend(CURATED_FACTS.get(symbol, []))
gf = GROUP_FACTS.get(row["category"], None)
if gf:
facts.append(gf)
facts_text = "\n• ".join(["**Interesting facts:**"] + facts) if facts else ""
if show_expl:
expl = explain_element(row, Z)
facts_text = (facts_text + "\n\n" if facts_text else "") + expl
return facts_text if facts_text else "No fact on file—still cool though!"
def element_info(z_or_symbol: str, show_expl: bool):
try:
if z_or_symbol.isdigit():
Z = int(z_or_symbol)
_ = elements[Z]
else:
el = elements.symbol(z_or_symbol)
Z = el.number
except Exception:
return f"Unknown element: {z_or_symbol}", "No data", None, None # info, facts, fig, current_Z
row = DF.loc[DF["Z"] == Z].iloc[0].to_dict()
symbol = row["symbol"]
def show(v):
return v if (v is not None and not pd.isna(v)) else "—"
props_lines = [
f"{row['name']} ({symbol}), Z = {Z}",
f"Period {int(row['period']) if not pd.isna(row['period']) else '—'}, "
f"Group {row['group'] if row['group'] is not None else '—'}, "
f"Block {row['block']} | Category: {row['category'].replace('-', ' ').title()}",
f"Atomic mass: {show(row['mass'])} u",
f"Density: {show(row['density'])} g/cm³",
f"Electronegativity: {show(row['electronegativity'])} (Pauling)",
f"Melting point: {show(row['melting_point'])} K | Boiling point: {show(row['boiling_point'])} K",
f"vdW radius: {show(row['vdw_radius'])} pm | Covalent radius: {show(row['covalent_radius'])} pm",
f"Radioactive: {'Yes' if row['is_radioactive'] else 'No'}",
]
info_text = "\n".join(props_lines)
prop_key = "electronegativity" if not pd.isna(row["electronegativity"]) else "mass"
trend_df = DF[["Z", "symbol", prop_key]].dropna()
fig = plot_trend(trend_df, prop_key, Z, symbol)
facts_text = compose_facts(row, Z, show_expl)
return info_text, facts_text, fig, Z
def handle_button_click(z: int, show_expl: bool):
return element_info(str(z), show_expl)
def search_element(query: str, show_expl: bool):
query = (query or "").strip()
if not query:
return gr.update(), gr.update(), gr.update(), gr.update()
return element_info(query, show_expl)
def refresh_facts(current_Z: Optional[int], show_expl: bool):
if current_Z is None:
return gr.update()
row = DF.loc[DF["Z"] == current_Z].iloc[0].to_dict()
return compose_facts(row, int(current_Z), show_expl)
# =========================
# UI (Gradio 4.29.0)
# =========================
with gr.Blocks(title="Interactive Periodic Table") as demo:
gr.Markdown("Click an element or search by symbol/name/atomic number.")
with gr.Row():
# Inspector & controls
with gr.Column(scale=1):
gr.Markdown("### Inspector")
show_expl = gr.Checkbox(label="Show advanced explanation", value=False)
search = gr.Textbox(label="Search (symbol/name/Z)", placeholder="e.g., C, Iron, 79")
info = gr.Textbox(label="Properties", lines=10, interactive=False)
facts = gr.Markdown("Select an element to see facts and explanations.")
trend = gr.Plot()
current_Z = gr.State(value=None)
search.submit(search_element, inputs=[search, show_expl], outputs=[info, facts, trend, current_Z])
show_expl.change(refresh_facts, inputs=[current_Z, show_expl], outputs=[facts])
gr.Markdown("### Trend heatmap")
prop = gr.Dropdown(choices=[k for k, _ in NUMERIC_PROPS], value="electronegativity", label="Property")
heat = gr.Plot()
prop.change(lambda k: plot_heatmap(k), inputs=[prop], outputs=[heat])
demo.load(lambda: plot_heatmap("electronegativity"), outputs=[heat])
# Main table
with gr.Column(scale=2):
gr.Markdown("### Main Table")
with gr.Row():
for g in range(1, 19):
gr.Markdown(f"**{g}**")
for r in range(len(GRID)):
with gr.Row():
for c in range(len(GRID[0])):
z = GRID[r][c]
if z is None:
gr.Button("", interactive=False)
else:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
btn = gr.Button(sym)
btn.click(
handle_button_click,
inputs=[gr.Number(z, visible=False), show_expl],
outputs=[info, facts, trend, current_Z],
)
gr.Markdown("### f-block (lanthanides & actinides)")
with gr.Row():
for z in LAN:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
gr.Button(sym).click(
handle_button_click,
inputs=[gr.Number(z, visible=False), show_expl],
outputs=[info, facts, trend, current_Z],
)
with gr.Row():
for z in ACT:
sym = DF.loc[DF["Z"] == z, "symbol"].values[0]
gr.Button(sym).click(
handle_button_click,
inputs=[gr.Number(z, visible=False), show_expl],
outputs=[info, facts, trend, current_Z],
)
if __name__ == "__main__":
demo.launch()
|