Spaces:
Runtime error
Runtime error
File size: 12,219 Bytes
0d80816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from modules.encoder.position_encoder import PositionEncoder
from modules.general.utils import append_dims, ConvNd, normalization, zero_module
from .attention import AttentionBlock
from .resblock import Downsample, ResBlock, Upsample
class UNet(nn.Module):
r"""The full UNet model with attention and timestep embedding.
Args:
dims: determines if the signal is 1D (temporal), 2D(spatial).
in_channels: channels in the input Tensor.
model_channels: base channel count for the model.
out_channels: channels in the output Tensor.
num_res_blocks: number of residual blocks per downsample.
channel_mult: channel multiplier for each level of the UNet.
num_attn_blocks: number of attention blocks at place.
attention_resolutions: a collection of downsample rates at which attention will
take place. May be a set, list, or tuple. For example, if this contains 4,
then at 4x downsampling, attention will be used.
num_heads: the number of attention heads in each attention layer.
num_head_channels: if specified, ignore num_heads and instead use a fixed
channel width per attention head.
d_context: if specified, use for cross-attention channel project.
p_dropout: the dropout probability.
use_self_attention: Apply self attention before cross attention.
num_classes: if specified (as an int), then this model will be class-conditional
with ``num_classes`` classes.
use_extra_film: if specified, use an extra FiLM-like conditioning mechanism.
d_emb: if specified, use for FiLM-like conditioning.
use_scale_shift_norm: use a FiLM-like conditioning mechanism.
resblock_updown: use residual blocks for up/downsampling.
"""
def __init__(
self,
dims: int = 1,
in_channels: int = 100,
model_channels: int = 128,
out_channels: int = 100,
h_dim: int = 128,
num_res_blocks: int = 1,
channel_mult: tuple = (1, 2, 4),
num_attn_blocks: int = 1,
attention_resolutions: tuple = (1, 2, 4),
num_heads: int = 1,
num_head_channels: int = -1,
d_context: int = None,
context_hdim: int = 128,
p_dropout: float = 0.0,
num_classes: int = -1,
use_extra_film: str = None,
d_emb: int = None,
use_scale_shift_norm: bool = True,
resblock_updown: bool = False,
):
super().__init__()
self.dims = dims
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
self.num_res_blocks = num_res_blocks
self.channel_mult = channel_mult
self.num_attn_blocks = num_attn_blocks
self.attention_resolutions = attention_resolutions
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.d_context = d_context
self.p_dropout = p_dropout
self.num_classes = num_classes
self.use_extra_film = use_extra_film
self.d_emb = d_emb
self.use_scale_shift_norm = use_scale_shift_norm
self.resblock_updown = resblock_updown
time_embed_dim = model_channels * 4
self.pos_enc = PositionEncoder(model_channels, time_embed_dim)
assert (
num_classes == -1 or use_extra_film is None
), "You cannot set both num_classes and use_extra_film."
if self.num_classes > 0:
# TODO: if used for singer, norm should be 1, correct?
self.label_emb = nn.Embedding(num_classes, time_embed_dim, max_norm=1.0)
elif use_extra_film is not None:
assert (
d_emb is not None
), "d_emb must be specified if use_extra_film is not None"
assert use_extra_film in [
"add",
"concat",
], f"use_extra_film only supported by add or concat. Your input is {use_extra_film}"
self.use_extra_film = use_extra_film
self.film_emb = ConvNd(dims, d_emb, time_embed_dim, 1)
if use_extra_film == "concat":
time_embed_dim *= 2
# Input blocks
ch = input_ch = int(channel_mult[0] * model_channels)
self.input_blocks = nn.ModuleList(
[UNetSequential(ConvNd(dims, in_channels, ch, 3, padding=1))]
)
self._feature_size = ch
input_block_chans = [ch]
ds = 1
for level, mult in enumerate(channel_mult):
for _ in range(num_res_blocks):
layers = [
ResBlock(
ch,
time_embed_dim,
p_dropout,
out_channels=int(mult * model_channels),
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = int(mult * model_channels)
if ds in attention_resolutions:
for _ in range(num_attn_blocks):
layers.append(
AttentionBlock(
ch,
num_heads=num_heads,
num_head_channels=num_head_channels,
encoder_channels=d_context,
dims=dims,
h_dim=h_dim // (level + 1),
encoder_hdim=context_hdim,
p_dropout=p_dropout,
)
)
self.input_blocks.append(UNetSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
UNetSequential(
ResBlock(
ch,
time_embed_dim,
p_dropout,
out_channels=out_ch,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(ch, dims=dims, out_channels=out_ch)
)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
# Middle blocks
self.middle_block = UNetSequential(
ResBlock(
ch,
time_embed_dim,
p_dropout,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
num_heads=num_heads,
num_head_channels=num_head_channels,
encoder_channels=d_context,
dims=dims,
h_dim=h_dim // (level + 1),
encoder_hdim=context_hdim,
p_dropout=p_dropout,
),
ResBlock(
ch,
time_embed_dim,
p_dropout,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
# Output blocks
self.output_blocks = nn.ModuleList([])
for level, mult in tuple(enumerate(channel_mult))[::-1]:
for i in range(num_res_blocks + 1):
ich = input_block_chans.pop()
layers = [
ResBlock(
ch + ich,
time_embed_dim,
p_dropout,
out_channels=int(model_channels * mult),
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = int(model_channels * mult)
if ds in attention_resolutions:
for _ in range(num_attn_blocks):
layers.append(
AttentionBlock(
ch,
num_heads=num_heads,
num_head_channels=num_head_channels,
encoder_channels=d_context,
dims=dims,
h_dim=h_dim // (level + 1),
encoder_hdim=context_hdim,
p_dropout=p_dropout,
)
)
if level and i == num_res_blocks:
out_ch = ch
layers.append(
ResBlock(
ch,
time_embed_dim,
p_dropout,
out_channels=out_ch,
dims=dims,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
)
if resblock_updown
else Upsample(ch, dims=dims, out_channels=out_ch)
)
ds //= 2
self.output_blocks.append(UNetSequential(*layers))
self._feature_size += ch
# Final proj out
self.out = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(ConvNd(dims, input_ch, out_channels, 3, padding=1)),
)
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
r"""Apply the model to an input batch.
Args:
x: an [N x C x ...] Tensor of inputs.
timesteps: a 1-D batch of timesteps, i.e. [N].
context: conditioning Tensor with shape of [N x ``d_context`` x ...] plugged
in via cross attention.
y: an [N] Tensor of labels, if **class-conditional**.
an [N x ``d_emb`` x ...] Tensor if **film-embed conditional**.
Returns:
an [N x C x ...] Tensor of outputs.
"""
assert (y is None) or (
(y is not None)
and ((self.num_classes > 0) or (self.use_extra_film is not None))
), f"y must be specified if num_classes or use_extra_film is not None. \nGot num_classes: {self.num_classes}\t\nuse_extra_film: {self.use_extra_film}\t\n"
hs = []
emb = self.pos_enc(timesteps)
emb = append_dims(emb, x.dim())
if self.num_classes > 0:
assert y.size() == (x.size(0),)
emb = emb + self.label_emb(y)
elif self.use_extra_film is not None:
assert y.size() == (x.size(0), self.d_emb, *x.size()[2:])
y = self.film_emb(y)
if self.use_extra_film == "add":
emb = emb + y
elif self.use_extra_film == "concat":
emb = torch.cat([emb, y], dim=1)
h = x
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
return self.out(h)
class UNetSequential(nn.Sequential):
r"""A sequential module that passes embeddings to the children that support it."""
def forward(self, x, emb=None, context=None):
for layer in self:
if isinstance(layer, ResBlock):
x = layer(x, emb)
elif isinstance(layer, AttentionBlock):
x = layer(x, context)
else:
x = layer(x)
return x
|