File size: 7,697 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import random

import numpy as np

from torch.nn import functional as F

from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from models.vocoders.vocoder_dataset import VocoderDataset


class GANVocoderDataset(VocoderDataset):
    def __init__(self, cfg, dataset, is_valid=False):
        """
        Args:
            cfg: config
            dataset: dataset name
            is_valid: whether to use train or valid dataset
        """
        super().__init__(cfg, dataset, is_valid)

        eval_index = random.randint(0, len(self.metadata) - 1)
        eval_utt_info = self.metadata[eval_index]
        eval_utt = "{}_{}".format(eval_utt_info["Dataset"], eval_utt_info["Uid"])
        self.eval_audio = np.load(self.utt2audio_path[eval_utt])
        if cfg.preprocess.use_mel:
            self.eval_mel = np.load(self.utt2mel_path[eval_utt])
        if cfg.preprocess.use_frame_pitch:
            self.eval_pitch = np.load(self.utt2frame_pitch_path[eval_utt])

    def __getitem__(self, index):
        utt_info = self.metadata[index]

        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        single_feature = dict()

        if self.cfg.preprocess.use_mel:
            mel = np.load(self.utt2mel_path[utt])
            assert mel.shape[0] == self.cfg.preprocess.n_mel

            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = mel.shape[1]

            if single_feature["target_len"] <= self.cfg.preprocess.cut_mel_frame:
                mel = np.pad(
                    mel,
                    ((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
                    mode="constant",
                )
            else:
                if "start" not in single_feature.keys():
                    start = random.randint(
                        0, mel.shape[-1] - self.cfg.preprocess.cut_mel_frame
                    )
                    end = start + self.cfg.preprocess.cut_mel_frame
                    single_feature["start"] = start
                    single_feature["end"] = end
                mel = mel[:, single_feature["start"] : single_feature["end"]]
            single_feature["mel"] = mel

        if self.cfg.preprocess.use_frame_pitch:
            frame_pitch = np.load(self.utt2frame_pitch_path[utt])
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = len(frame_pitch)
            aligned_frame_pitch = align_length(
                frame_pitch, single_feature["target_len"]
            )

            if single_feature["target_len"] <= self.cfg.preprocess.cut_mel_frame:
                aligned_frame_pitch = np.pad(
                    aligned_frame_pitch,
                    (
                        (
                            0,
                            self.cfg.preprocess.cut_mel_frame
                            * self.cfg.preprocess.hop_size
                            - audio.shape[-1],
                        )
                    ),
                    mode="constant",
                )
            else:
                if "start" not in single_feature.keys():
                    start = random.randint(
                        0,
                        aligned_frame_pitch.shape[-1]
                        - self.cfg.preprocess.cut_mel_frame,
                    )
                    end = start + self.cfg.preprocess.cut_mel_frame
                    single_feature["start"] = start
                    single_feature["end"] = end
                aligned_frame_pitch = aligned_frame_pitch[
                    single_feature["start"] : single_feature["end"]
                ]
            single_feature["frame_pitch"] = aligned_frame_pitch

        if self.cfg.preprocess.use_audio:
            audio = np.load(self.utt2audio_path[utt])

            assert "target_len" in single_feature.keys()

            if (
                audio.shape[-1]
                <= self.cfg.preprocess.cut_mel_frame * self.cfg.preprocess.hop_size
            ):
                audio = np.pad(
                    audio,
                    (
                        (
                            0,
                            self.cfg.preprocess.cut_mel_frame
                            * self.cfg.preprocess.hop_size
                            - audio.shape[-1],
                        )
                    ),
                    mode="constant",
                )
            else:
                if "start" not in single_feature.keys():
                    audio = audio[
                        0 : self.cfg.preprocess.cut_mel_frame
                        * self.cfg.preprocess.hop_size
                    ]
                else:
                    audio = audio[
                        single_feature["start"]
                        * self.cfg.preprocess.hop_size : single_feature["end"]
                        * self.cfg.preprocess.hop_size,
                    ]
            single_feature["audio"] = audio

        if self.cfg.preprocess.use_amplitude_phase:
            logamp = np.load(self.utt2logamp_path[utt])
            pha = np.load(self.utt2pha_path[utt])
            rea = np.load(self.utt2rea_path[utt])
            imag = np.load(self.utt2imag_path[utt])

            assert "target_len" in single_feature.keys()

            if single_feature["target_len"] <= self.cfg.preprocess.cut_mel_frame:
                logamp = np.pad(
                    logamp,
                    ((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
                    mode="constant",
                )
                pha = np.pad(
                    pha,
                    ((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
                    mode="constant",
                )
                rea = np.pad(
                    rea,
                    ((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
                    mode="constant",
                )
                imag = np.pad(
                    imag,
                    ((0, 0), (0, self.cfg.preprocess.cut_mel_frame - mel.shape[-1])),
                    mode="constant",
                )
            else:
                logamp = logamp[:, single_feature["start"] : single_feature["end"]]
                pha = pha[:, single_feature["start"] : single_feature["end"]]
                rea = rea[:, single_feature["start"] : single_feature["end"]]
                imag = imag[:, single_feature["start"] : single_feature["end"]]
            single_feature["logamp"] = logamp
            single_feature["pha"] = pha
            single_feature["rea"] = rea
            single_feature["imag"] = imag

        return single_feature


class GANVocoderCollator(object):
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        self.cfg = cfg

    def __call__(self, batch):
        packed_batch_features = dict()

        # mel: [b, n_mels, frame]
        # frame_pitch: [b, frame]
        # audios: [b, frame * hop_size]

        for key in batch[0].keys():
            if key in ["target_len", "start", "end"]:
                continue
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )

        return packed_batch_features