Spaces:
Runtime error
Runtime error
File size: 13,059 Bytes
0d80816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import collections
import json
import os
import sys
import time
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import ConcatDataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from models.base.base_sampler import BatchSampler
from utils.util import (
Logger,
remove_older_ckpt,
save_config,
set_all_random_seed,
ValueWindow,
)
class BaseTrainer(object):
def __init__(self, args, cfg):
self.args = args
self.log_dir = args.log_dir
self.cfg = cfg
self.checkpoint_dir = os.path.join(args.log_dir, "checkpoints")
os.makedirs(self.checkpoint_dir, exist_ok=True)
if not cfg.train.ddp or args.local_rank == 0:
self.sw = SummaryWriter(os.path.join(args.log_dir, "events"))
self.logger = self.build_logger()
self.time_window = ValueWindow(50)
self.step = 0
self.epoch = -1
self.max_epochs = self.cfg.train.epochs
self.max_steps = self.cfg.train.max_steps
# set random seed & init distributed training
set_all_random_seed(self.cfg.train.random_seed)
if cfg.train.ddp:
dist.init_process_group(backend="nccl")
if cfg.model_type not in ["AutoencoderKL", "AudioLDM"]:
self.singers = self.build_singers_lut()
# setup data_loader
self.data_loader = self.build_data_loader()
# setup model & enable distributed training
self.model = self.build_model()
print(self.model)
if isinstance(self.model, dict):
for key, value in self.model.items():
value.cuda(self.args.local_rank)
if key == "PQMF":
continue
if cfg.train.ddp:
self.model[key] = DistributedDataParallel(
value, device_ids=[self.args.local_rank]
)
else:
self.model.cuda(self.args.local_rank)
if cfg.train.ddp:
self.model = DistributedDataParallel(
self.model, device_ids=[self.args.local_rank]
)
# create criterion
self.criterion = self.build_criterion()
if isinstance(self.criterion, dict):
for key, value in self.criterion.items():
self.criterion[key].cuda(args.local_rank)
else:
self.criterion.cuda(self.args.local_rank)
# optimizer
self.optimizer = self.build_optimizer()
self.scheduler = self.build_scheduler()
# save config file
self.config_save_path = os.path.join(self.checkpoint_dir, "args.json")
def build_logger(self):
log_file = os.path.join(self.checkpoint_dir, "train.log")
logger = Logger(log_file, level=self.args.log_level).logger
return logger
def build_dataset(self):
raise NotImplementedError
def build_data_loader(self):
Dataset, Collator = self.build_dataset()
# build dataset instance for each dataset and combine them by ConcatDataset
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=False)
datasets_list.append(subdataset)
train_dataset = ConcatDataset(datasets_list)
train_collate = Collator(self.cfg)
# TODO: multi-GPU training
if self.cfg.train.ddp:
raise NotImplementedError("DDP is not supported yet.")
# sampler will provide indices to batch_sampler, which will perform batching and yield batch indices
batch_sampler = BatchSampler(
cfg=self.cfg, concat_dataset=train_dataset, dataset_list=datasets_list
)
# use batch_sampler argument instead of (sampler, shuffle, drop_last, batch_size)
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
num_workers=self.args.num_workers,
batch_sampler=batch_sampler,
pin_memory=False,
)
if not self.cfg.train.ddp or self.args.local_rank == 0:
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
valid_dataset = ConcatDataset(datasets_list)
valid_collate = Collator(self.cfg)
batch_sampler = BatchSampler(
cfg=self.cfg, concat_dataset=valid_dataset, dataset_list=datasets_list
)
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
num_workers=1,
batch_sampler=batch_sampler,
)
else:
raise NotImplementedError("DDP is not supported yet.")
# valid_loader = None
data_loader = {"train": train_loader, "valid": valid_loader}
return data_loader
def build_singers_lut(self):
# combine singers
if not os.path.exists(os.path.join(self.log_dir, self.cfg.preprocess.spk2id)):
singers = collections.OrderedDict()
else:
with open(
os.path.join(self.log_dir, self.cfg.preprocess.spk2id), "r"
) as singer_file:
singers = json.load(singer_file)
singer_count = len(singers)
for dataset in self.cfg.dataset:
singer_lut_path = os.path.join(
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.spk2id
)
with open(singer_lut_path, "r") as singer_lut_path:
singer_lut = json.load(singer_lut_path)
for singer in singer_lut.keys():
if singer not in singers:
singers[singer] = singer_count
singer_count += 1
with open(
os.path.join(self.log_dir, self.cfg.preprocess.spk2id), "w"
) as singer_file:
json.dump(singers, singer_file, indent=4, ensure_ascii=False)
print(
"singers have been dumped to {}".format(
os.path.join(self.log_dir, self.cfg.preprocess.spk2id)
)
)
return singers
def build_model(self):
raise NotImplementedError()
def build_optimizer(self):
raise NotImplementedError
def build_scheduler(self):
raise NotImplementedError()
def build_criterion(self):
raise NotImplementedError
def get_state_dict(self):
raise NotImplementedError
def save_config_file(self):
save_config(self.config_save_path, self.cfg)
# TODO, save without module.
def save_checkpoint(self, state_dict, saved_model_path):
torch.save(state_dict, saved_model_path)
def load_checkpoint(self):
checkpoint_path = os.path.join(self.checkpoint_dir, "checkpoint")
assert os.path.exists(checkpoint_path)
checkpoint_filename = open(checkpoint_path).readlines()[-1].strip()
model_path = os.path.join(self.checkpoint_dir, checkpoint_filename)
assert os.path.exists(model_path)
if not self.cfg.train.ddp or self.args.local_rank == 0:
self.logger.info(f"Re(store) from {model_path}")
checkpoint = torch.load(model_path, map_location="cpu")
return checkpoint
def load_model(self, checkpoint):
raise NotImplementedError
def restore(self):
checkpoint = self.load_checkpoint()
self.load_model(checkpoint)
def train_step(self, data):
raise NotImplementedError(
f"Need to implement function {sys._getframe().f_code.co_name} in "
f"your sub-class of {self.__class__.__name__}. "
)
@torch.no_grad()
def eval_step(self):
raise NotImplementedError(
f"Need to implement function {sys._getframe().f_code.co_name} in "
f"your sub-class of {self.__class__.__name__}. "
)
def write_summary(self, losses, stats):
raise NotImplementedError(
f"Need to implement function {sys._getframe().f_code.co_name} in "
f"your sub-class of {self.__class__.__name__}. "
)
def write_valid_summary(self, losses, stats):
raise NotImplementedError(
f"Need to implement function {sys._getframe().f_code.co_name} in "
f"your sub-class of {self.__class__.__name__}. "
)
def echo_log(self, losses, mode="Training"):
message = [
"{} - Epoch {} Step {}: [{:.3f} s/step]".format(
mode, self.epoch + 1, self.step, self.time_window.average
)
]
for key in sorted(losses.keys()):
if isinstance(losses[key], dict):
for k, v in losses[key].items():
message.append(
str(k).split("/")[-1] + "=" + str(round(float(v), 5))
)
else:
message.append(
str(key).split("/")[-1] + "=" + str(round(float(losses[key]), 5))
)
self.logger.info(", ".join(message))
def eval_epoch(self):
self.logger.info("Validation...")
valid_losses = {}
for i, batch_data in enumerate(self.data_loader["valid"]):
for k, v in batch_data.items():
if isinstance(v, torch.Tensor):
batch_data[k] = v.cuda()
valid_loss, valid_stats, total_valid_loss = self.eval_step(batch_data, i)
for key in valid_loss:
if key not in valid_losses:
valid_losses[key] = 0
valid_losses[key] += valid_loss[key]
# Add mel and audio to the Tensorboard
# Average loss
for key in valid_losses:
valid_losses[key] /= i + 1
self.echo_log(valid_losses, "Valid")
return valid_losses, valid_stats
def train_epoch(self):
for i, batch_data in enumerate(self.data_loader["train"]):
start_time = time.time()
# Put the data to cuda device
for k, v in batch_data.items():
if isinstance(v, torch.Tensor):
batch_data[k] = v.cuda(self.args.local_rank)
# Training step
train_losses, train_stats, total_loss = self.train_step(batch_data)
self.time_window.append(time.time() - start_time)
if self.args.local_rank == 0 or not self.cfg.train.ddp:
if self.step % self.args.stdout_interval == 0:
self.echo_log(train_losses, "Training")
if self.step % self.cfg.train.save_summary_steps == 0:
self.logger.info(f"Save summary as step {self.step}")
self.write_summary(train_losses, train_stats)
if (
self.step % self.cfg.train.save_checkpoints_steps == 0
and self.step != 0
):
saved_model_name = "step-{:07d}_loss-{:.4f}.pt".format(
self.step, total_loss
)
saved_model_path = os.path.join(
self.checkpoint_dir, saved_model_name
)
saved_state_dict = self.get_state_dict()
self.save_checkpoint(saved_state_dict, saved_model_path)
self.save_config_file()
# keep max n models
remove_older_ckpt(
saved_model_name,
self.checkpoint_dir,
max_to_keep=self.cfg.train.keep_checkpoint_max,
)
if self.step != 0 and self.step % self.cfg.train.valid_interval == 0:
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].eval()
else:
self.model.eval()
# Evaluate one epoch and get average loss
valid_losses, valid_stats = self.eval_epoch()
if isinstance(self.model, dict):
for key in self.model.keys():
self.model[key].train()
else:
self.model.train()
# Write validation losses to summary.
self.write_valid_summary(valid_losses, valid_stats)
self.step += 1
def train(self):
for epoch in range(max(0, self.epoch), self.max_epochs):
self.train_epoch()
self.epoch += 1
if self.step > self.max_steps:
self.logger.info("Training finished!")
break
|