File size: 43,796 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

from __future__ import print_function

import argparse
import os
import sys

import torch
import yaml
import logging

import torch.nn.functional as F
from wenet.utils.checkpoint import load_checkpoint
from wenet.transformer.ctc import CTC
from wenet.transformer.decoder import TransformerDecoder
from wenet.transformer.encoder import BaseEncoder
from wenet.utils.init_model import init_model
from wenet.utils.mask import make_pad_mask

try:
    import onnxruntime
except ImportError:
    print("Please install onnxruntime-gpu!")
    sys.exit(1)

logger = logging.getLogger(__file__)
logger.setLevel(logging.INFO)


class Encoder(torch.nn.Module):
    def __init__(self, encoder: BaseEncoder, ctc: CTC, beam_size: int = 10):
        super().__init__()
        self.encoder = encoder
        self.ctc = ctc
        self.beam_size = beam_size

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
    ):
        """Encoder
        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
        Returns:
            encoder_out: B x T x F
            encoder_out_lens: B
            ctc_log_probs: B x T x V
            beam_log_probs: B x T x beam_size
            beam_log_probs_idx: B x T x beam_size
        """
        encoder_out, encoder_mask = self.encoder(speech, speech_lengths, -1, -1)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)
        ctc_log_probs = self.ctc.log_softmax(encoder_out)
        encoder_out_lens = encoder_out_lens.int()
        beam_log_probs, beam_log_probs_idx = torch.topk(
            ctc_log_probs, self.beam_size, dim=2
        )
        return (
            encoder_out,
            encoder_out_lens,
            ctc_log_probs,
            beam_log_probs,
            beam_log_probs_idx,
        )


class StreamingEncoder(torch.nn.Module):
    def __init__(self, model, required_cache_size, beam_size, transformer=False):
        super().__init__()
        self.ctc = model.ctc
        self.subsampling_rate = model.encoder.embed.subsampling_rate
        self.embed = model.encoder.embed
        self.global_cmvn = model.encoder.global_cmvn
        self.required_cache_size = required_cache_size
        self.beam_size = beam_size
        self.encoder = model.encoder
        self.transformer = transformer

    def forward(self, chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask):
        """Streaming Encoder
        Args:
            xs (torch.Tensor): chunk input, with shape (b, time, mel-dim),
                where `time == (chunk_size - 1) * subsample_rate + \
                        subsample.right_context + 1`
            offset (torch.Tensor): offset with shape (b, 1)
                        1 is retained for triton deployment
            required_cache_size (int): cache size required for next chunk
                compuation
                > 0: actual cache size
                <= 0: not allowed in streaming gpu encoder                   `
            att_cache (torch.Tensor): cache tensor for KEY & VALUE in
                transformer/conformer attention, with shape
                (b, elayers, head, cache_t1, d_k * 2), where
                `head * d_k == hidden-dim` and
                `cache_t1 == chunk_size * num_decoding_left_chunks`.
            cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
                (b, elayers, b, hidden-dim, cache_t2), where
                `cache_t2 == cnn.lorder - 1`
            cache_mask: (torch.Tensor): cache mask with shape (b, required_cache_size)
                 in a batch of request, each request may have different
                 history cache. Cache mask is used to indidate the effective
                 cache for each request
        Returns:
            torch.Tensor: log probabilities of ctc output and cutoff by beam size
                with shape (b, chunk_size, beam)
            torch.Tensor: index of top beam size probabilities for each timestep
                with shape (b, chunk_size, beam)
            torch.Tensor: output of current input xs,
                with shape (b, chunk_size, hidden-dim).
            torch.Tensor: new attention cache required for next chunk, with
                same shape (b, elayers, head, cache_t1, d_k * 2)
                as the original att_cache
            torch.Tensor: new conformer cnn cache required for next chunk, with
                same shape as the original cnn_cache.
            torch.Tensor: new cache mask, with same shape as the original
                cache mask
        """
        offset = offset.squeeze(1)
        T = chunk_xs.size(1)
        chunk_mask = ~make_pad_mask(chunk_lens, T).unsqueeze(1)
        # B X 1 X T
        chunk_mask = chunk_mask.to(chunk_xs.dtype)
        # transpose batch & num_layers dim
        att_cache = torch.transpose(att_cache, 0, 1)
        cnn_cache = torch.transpose(cnn_cache, 0, 1)

        # rewrite encoder.forward_chunk
        # <---------forward_chunk START--------->
        xs = self.global_cmvn(chunk_xs)
        # chunk mask is important for batch inferencing since
        # different sequence in a batch has different length
        xs, pos_emb, chunk_mask = self.embed(xs, chunk_mask, offset)
        cache_size = att_cache.size(3)  # required cache size
        masks = torch.cat((cache_mask, chunk_mask), dim=2)
        index = offset - cache_size

        pos_emb = self.embed.position_encoding(index, cache_size + xs.size(1))
        pos_emb = pos_emb.to(dtype=xs.dtype)

        next_cache_start = -self.required_cache_size
        r_cache_mask = masks[:, :, next_cache_start:]

        r_att_cache = []
        r_cnn_cache = []
        for i, layer in enumerate(self.encoder.encoders):
            xs, _, new_att_cache, new_cnn_cache = layer(
                xs, masks, pos_emb, att_cache=att_cache[i], cnn_cache=cnn_cache[i]
            )
            #   shape(new_att_cache) is (B, head, attention_key_size, d_k * 2),
            #   shape(new_cnn_cache) is (B, hidden-dim, cache_t2)
            r_att_cache.append(new_att_cache[:, :, next_cache_start:, :].unsqueeze(1))
            if not self.transformer:
                r_cnn_cache.append(new_cnn_cache.unsqueeze(1))
        if self.encoder.normalize_before:
            chunk_out = self.encoder.after_norm(xs)
        else:
            chunk_out = xs

        r_att_cache = torch.cat(r_att_cache, dim=1)  # concat on layers idx
        if not self.transformer:
            r_cnn_cache = torch.cat(r_cnn_cache, dim=1)  # concat on layers

        # <---------forward_chunk END--------->

        log_ctc_probs = self.ctc.log_softmax(chunk_out)
        log_probs, log_probs_idx = torch.topk(log_ctc_probs, self.beam_size, dim=2)
        log_probs = log_probs.to(chunk_xs.dtype)

        r_offset = offset + chunk_out.shape[1]
        # the below ops not supported in Tensorrt
        # chunk_out_lens = torch.div(chunk_lens, subsampling_rate,
        #                   rounding_mode='floor')
        chunk_out_lens = chunk_lens // self.subsampling_rate
        r_offset = r_offset.unsqueeze(1)

        return (
            log_probs,
            log_probs_idx,
            chunk_out,
            chunk_out_lens,
            r_offset,
            r_att_cache,
            r_cnn_cache,
            r_cache_mask,
        )


class StreamingSqueezeformerEncoder(torch.nn.Module):
    def __init__(self, model, required_cache_size, beam_size):
        super().__init__()
        self.ctc = model.ctc
        self.subsampling_rate = model.encoder.embed.subsampling_rate
        self.embed = model.encoder.embed
        self.global_cmvn = model.encoder.global_cmvn
        self.required_cache_size = required_cache_size
        self.beam_size = beam_size
        self.encoder = model.encoder
        self.reduce_idx = model.encoder.reduce_idx
        self.recover_idx = model.encoder.recover_idx
        if self.reduce_idx is None:
            self.time_reduce = None
        else:
            if self.recover_idx is None:
                self.time_reduce = "normal"  # no recovery at the end
            else:
                self.time_reduce = "recover"  # recovery at the end
                assert len(self.reduce_idx) == len(self.recover_idx)

    def calculate_downsampling_factor(self, i: int) -> int:
        if self.reduce_idx is None:
            return 1
        else:
            reduce_exp, recover_exp = 0, 0
            for exp, rd_idx in enumerate(self.reduce_idx):
                if i >= rd_idx:
                    reduce_exp = exp + 1
            if self.recover_idx is not None:
                for exp, rc_idx in enumerate(self.recover_idx):
                    if i >= rc_idx:
                        recover_exp = exp + 1
            return int(2 ** (reduce_exp - recover_exp))

    def forward(self, chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask):
        """Streaming Encoder
        Args:
            xs (torch.Tensor): chunk input, with shape (b, time, mel-dim),
                where `time == (chunk_size - 1) * subsample_rate + \
                        subsample.right_context + 1`
            offset (torch.Tensor): offset with shape (b, 1)
                        1 is retained for triton deployment
            required_cache_size (int): cache size required for next chunk
                compuation
                > 0: actual cache size
                <= 0: not allowed in streaming gpu encoder                   `
            att_cache (torch.Tensor): cache tensor for KEY & VALUE in
                transformer/conformer attention, with shape
                (b, elayers, head, cache_t1, d_k * 2), where
                `head * d_k == hidden-dim` and
                `cache_t1 == chunk_size * num_decoding_left_chunks`.
            cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
                (b, elayers, b, hidden-dim, cache_t2), where
                `cache_t2 == cnn.lorder - 1`
            cache_mask: (torch.Tensor): cache mask with shape (b, required_cache_size)
                 in a batch of request, each request may have different
                 history cache. Cache mask is used to indidate the effective
                 cache for each request
        Returns:
            torch.Tensor: log probabilities of ctc output and cutoff by beam size
                with shape (b, chunk_size, beam)
            torch.Tensor: index of top beam size probabilities for each timestep
                with shape (b, chunk_size, beam)
            torch.Tensor: output of current input xs,
                with shape (b, chunk_size, hidden-dim).
            torch.Tensor: new attention cache required for next chunk, with
                same shape (b, elayers, head, cache_t1, d_k * 2)
                as the original att_cache
            torch.Tensor: new conformer cnn cache required for next chunk, with
                same shape as the original cnn_cache.
            torch.Tensor: new cache mask, with same shape as the original
                cache mask
        """
        offset = offset.squeeze(1)
        T = chunk_xs.size(1)
        chunk_mask = ~make_pad_mask(chunk_lens, T).unsqueeze(1)
        # B X 1 X T
        chunk_mask = chunk_mask.to(chunk_xs.dtype)
        # transpose batch & num_layers dim
        att_cache = torch.transpose(att_cache, 0, 1)
        cnn_cache = torch.transpose(cnn_cache, 0, 1)

        # rewrite encoder.forward_chunk
        # <---------forward_chunk START--------->
        xs = self.global_cmvn(chunk_xs)
        # chunk mask is important for batch inferencing since
        # different sequence in a batch has different length
        xs, pos_emb, chunk_mask = self.embed(xs, chunk_mask, offset)
        elayers, cache_size = att_cache.size(0), att_cache.size(3)
        att_mask = torch.cat((cache_mask, chunk_mask), dim=2)
        index = offset - cache_size

        pos_emb = self.embed.position_encoding(index, cache_size + xs.size(1))
        pos_emb = pos_emb.to(dtype=xs.dtype)

        next_cache_start = -self.required_cache_size
        r_cache_mask = att_mask[:, :, next_cache_start:]

        r_att_cache = []
        r_cnn_cache = []
        mask_pad = torch.ones(1, xs.size(1), device=xs.device, dtype=torch.bool)
        mask_pad = mask_pad.unsqueeze(1)
        max_att_len: int = 0
        recover_activations: List[
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]
        ] = []
        index = 0
        xs_lens = torch.tensor([xs.size(1)], device=xs.device, dtype=torch.int)
        xs = self.encoder.preln(xs)
        for i, layer in enumerate(self.encoder.encoders):
            if self.reduce_idx is not None:
                if self.time_reduce is not None and i in self.reduce_idx:
                    recover_activations.append((xs, att_mask, pos_emb, mask_pad))
                    xs, xs_lens, att_mask, mask_pad = self.encoder.time_reduction_layer(
                        xs, xs_lens, att_mask, mask_pad
                    )
                    pos_emb = pos_emb[:, ::2, :]
                    if self.encoder.pos_enc_layer_type == "rel_pos_repaired":
                        pos_emb = pos_emb[:, : xs.size(1) * 2 - 1, :]
                    index += 1

            if self.recover_idx is not None:
                if self.time_reduce == "recover" and i in self.recover_idx:
                    index -= 1
                    (
                        recover_tensor,
                        recover_att_mask,
                        recover_pos_emb,
                        recover_mask_pad,
                    ) = recover_activations[index]
                    # recover output length for ctc decode
                    xs = xs.unsqueeze(2).repeat(1, 1, 2, 1).flatten(1, 2)
                    xs = self.encoder.time_recover_layer(xs)
                    recoverd_t = recover_tensor.size(1)
                    xs = recover_tensor + xs[:, :recoverd_t, :].contiguous()
                    att_mask = recover_att_mask
                    pos_emb = recover_pos_emb
                    mask_pad = recover_mask_pad

            factor = self.calculate_downsampling_factor(i)

            xs, _, new_att_cache, new_cnn_cache = layer(
                xs,
                att_mask,
                pos_emb,
                att_cache=att_cache[i][:, :, ::factor, :][
                    :, :, : pos_emb.size(1) - xs.size(1), :
                ]
                if elayers > 0
                else att_cache[:, :, ::factor, :],
                cnn_cache=cnn_cache[i] if cnn_cache.size(0) > 0 else cnn_cache,
            )
            cached_att = new_att_cache[:, :, next_cache_start // factor :, :]
            cached_cnn = new_cnn_cache.unsqueeze(1)
            cached_att = (
                cached_att.unsqueeze(3).repeat(1, 1, 1, factor, 1).flatten(2, 3)
            )
            if i == 0:
                # record length for the first block as max length
                max_att_len = cached_att.size(2)
            r_att_cache.append(cached_att[:, :, :max_att_len, :].unsqueeze(1))
            r_cnn_cache.append(cached_cnn)

        chunk_out = xs
        r_att_cache = torch.cat(r_att_cache, dim=1)  # concat on layers idx
        r_cnn_cache = torch.cat(r_cnn_cache, dim=1)  # concat on layers

        # <---------forward_chunk END--------->

        log_ctc_probs = self.ctc.log_softmax(chunk_out)
        log_probs, log_probs_idx = torch.topk(log_ctc_probs, self.beam_size, dim=2)
        log_probs = log_probs.to(chunk_xs.dtype)

        r_offset = offset + chunk_out.shape[1]
        # the below ops not supported in Tensorrt
        # chunk_out_lens = torch.div(chunk_lens, subsampling_rate,
        #                   rounding_mode='floor')
        chunk_out_lens = chunk_lens // self.subsampling_rate
        r_offset = r_offset.unsqueeze(1)

        return (
            log_probs,
            log_probs_idx,
            chunk_out,
            chunk_out_lens,
            r_offset,
            r_att_cache,
            r_cnn_cache,
            r_cache_mask,
        )


class StreamingEfficientConformerEncoder(torch.nn.Module):
    def __init__(self, model, required_cache_size, beam_size):
        super().__init__()
        self.ctc = model.ctc
        self.subsampling_rate = model.encoder.embed.subsampling_rate
        self.embed = model.encoder.embed
        self.global_cmvn = model.encoder.global_cmvn
        self.required_cache_size = required_cache_size
        self.beam_size = beam_size
        self.encoder = model.encoder

        # Efficient Conformer
        self.stride_layer_idx = model.encoder.stride_layer_idx
        self.stride = model.encoder.stride
        self.num_blocks = model.encoder.num_blocks
        self.cnn_module_kernel = model.encoder.cnn_module_kernel

    def calculate_downsampling_factor(self, i: int) -> int:
        factor = 1
        for idx, stride_idx in enumerate(self.stride_layer_idx):
            if i > stride_idx:
                factor *= self.stride[idx]
        return factor

    def forward(self, chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask):
        """Streaming Encoder
        Args:
            chunk_xs (torch.Tensor): chunk input, with shape (b, time, mel-dim),
                where `time == (chunk_size - 1) * subsample_rate + \
                        subsample.right_context + 1`
            chunk_lens (torch.Tensor):
            offset (torch.Tensor): offset with shape (b, 1)
                        1 is retained for triton deployment
            att_cache (torch.Tensor): cache tensor for KEY & VALUE in
                transformer/conformer attention, with shape
                (b, elayers, head, cache_t1, d_k * 2), where
                `head * d_k == hidden-dim` and
                `cache_t1 == chunk_size * num_decoding_left_chunks`.
            cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
                (b, elayers, hidden-dim, cache_t2), where
                `cache_t2 == cnn.lorder - 1`
            cache_mask: (torch.Tensor): cache mask with shape (b, required_cache_size)
                 in a batch of request, each request may have different
                 history cache. Cache mask is used to indidate the effective
                 cache for each request
        Returns:
            torch.Tensor: log probabilities of ctc output and cutoff by beam size
                with shape (b, chunk_size, beam)
            torch.Tensor: index of top beam size probabilities for each timestep
                with shape (b, chunk_size, beam)
            torch.Tensor: output of current input xs,
                with shape (b, chunk_size, hidden-dim).
            torch.Tensor: new attention cache required for next chunk, with
                same shape (b, elayers, head, cache_t1, d_k * 2)
                as the original att_cache
            torch.Tensor: new conformer cnn cache required for next chunk, with
                same shape as the original cnn_cache.
            torch.Tensor: new cache mask, with same shape as the original
                cache mask
        """
        offset = offset.squeeze(1)  # (b, )
        offset *= self.calculate_downsampling_factor(self.num_blocks + 1)

        T = chunk_xs.size(1)
        chunk_mask = ~make_pad_mask(chunk_lens, T).unsqueeze(1)  # (b, 1, T)
        # B X 1 X T
        chunk_mask = chunk_mask.to(chunk_xs.dtype)
        # transpose batch & num_layers dim
        #   Shape(att_cache): (elayers, b, head, cache_t1, d_k * 2)
        #   Shape(cnn_cache): (elayers, b, outsize, cnn_kernel)
        att_cache = torch.transpose(att_cache, 0, 1)
        cnn_cache = torch.transpose(cnn_cache, 0, 1)

        # rewrite encoder.forward_chunk
        # <---------forward_chunk START--------->
        xs = self.global_cmvn(chunk_xs)
        # chunk mask is important for batch inferencing since
        # different sequence in a batch has different length
        xs, pos_emb, chunk_mask = self.embed(xs, chunk_mask, offset)
        cache_size = att_cache.size(3)  # required cache size
        masks = torch.cat((cache_mask, chunk_mask), dim=2)
        att_mask = torch.cat((cache_mask, chunk_mask), dim=2)
        index = offset - cache_size

        pos_emb = self.embed.position_encoding(index, cache_size + xs.size(1))
        pos_emb = pos_emb.to(dtype=xs.dtype)

        next_cache_start = -self.required_cache_size
        r_cache_mask = masks[:, :, next_cache_start:]

        r_att_cache = []
        r_cnn_cache = []
        mask_pad = chunk_mask.to(torch.bool)
        max_att_len, max_cnn_len = 0, 0  # for repeat_interleave of new_att_cache
        for i, layer in enumerate(self.encoder.encoders):
            factor = self.calculate_downsampling_factor(i)
            # NOTE(xcsong): Before layer.forward
            #   shape(att_cache[i:i + 1]) is (b, head, cache_t1, d_k * 2),
            #   shape(cnn_cache[i])       is (b=1, hidden-dim, cache_t2)
            # shape(new_att_cache) = [ batch, head, time2, outdim//head * 2 ]
            att_cache_trunc = 0
            if xs.size(1) + att_cache.size(3) / factor > pos_emb.size(1):
                # The time step is not divisible by the downsampling multiple
                # We propose to double the chunk_size.
                att_cache_trunc = (
                    xs.size(1) + att_cache.size(3) // factor - pos_emb.size(1) + 1
                )
            xs, _, new_att_cache, new_cnn_cache = layer(
                xs,
                att_mask,
                pos_emb,
                mask_pad=mask_pad,
                att_cache=att_cache[i][:, :, ::factor, :][:, :, att_cache_trunc:, :],
                cnn_cache=cnn_cache[i, :, :, :] if cnn_cache.size(0) > 0 else cnn_cache,
            )

            if i in self.stride_layer_idx:
                # compute time dimension for next block
                efficient_index = self.stride_layer_idx.index(i)
                att_mask = att_mask[
                    :, :: self.stride[efficient_index], :: self.stride[efficient_index]
                ]
                mask_pad = mask_pad[
                    :, :: self.stride[efficient_index], :: self.stride[efficient_index]
                ]
                pos_emb = pos_emb[:, :: self.stride[efficient_index], :]

            # shape(new_att_cache) = [batch, head, time2, outdim]
            new_att_cache = new_att_cache[:, :, next_cache_start // factor :, :]
            # shape(new_cnn_cache) = [batch, 1, outdim, cache_t2]
            new_cnn_cache = new_cnn_cache.unsqueeze(1)  # shape(1):layerID

            # use repeat_interleave to new_att_cache
            # new_att_cache = new_att_cache.repeat_interleave(repeats=factor, dim=2)
            new_att_cache = (
                new_att_cache.unsqueeze(3).repeat(1, 1, 1, factor, 1).flatten(2, 3)
            )
            # padding new_cnn_cache to cnn.lorder for casual convolution
            new_cnn_cache = F.pad(
                new_cnn_cache, (self.cnn_module_kernel - 1 - new_cnn_cache.size(3), 0)
            )

            if i == 0:
                # record length for the first block as max length
                max_att_len = new_att_cache.size(2)
                max_cnn_len = new_cnn_cache.size(3)

            # update real shape of att_cache and cnn_cache
            r_att_cache.append(new_att_cache[:, :, -max_att_len:, :].unsqueeze(1))
            r_cnn_cache.append(new_cnn_cache[:, :, :, -max_cnn_len:])

        if self.encoder.normalize_before:
            chunk_out = self.encoder.after_norm(xs)
        else:
            chunk_out = xs

        # shape of r_att_cache: (b, elayers, head, time2, outdim)
        r_att_cache = torch.cat(r_att_cache, dim=1)  # concat on layers idx
        # shape of r_cnn_cache: (b, elayers, outdim, cache_t2)
        r_cnn_cache = torch.cat(r_cnn_cache, dim=1)  # concat on layers

        # <---------forward_chunk END--------->

        log_ctc_probs = self.ctc.log_softmax(chunk_out)
        log_probs, log_probs_idx = torch.topk(log_ctc_probs, self.beam_size, dim=2)
        log_probs = log_probs.to(chunk_xs.dtype)

        r_offset = offset + chunk_out.shape[1]
        # the below ops not supported in Tensorrt
        # chunk_out_lens = torch.div(chunk_lens, subsampling_rate,
        #                   rounding_mode='floor')
        chunk_out_lens = (
            chunk_lens
            // self.subsampling_rate
            // self.calculate_downsampling_factor(self.num_blocks + 1)
        )
        chunk_out_lens += 1
        r_offset = r_offset.unsqueeze(1)

        return (
            log_probs,
            log_probs_idx,
            chunk_out,
            chunk_out_lens,
            r_offset,
            r_att_cache,
            r_cnn_cache,
            r_cache_mask,
        )


class Decoder(torch.nn.Module):
    def __init__(
        self,
        decoder: TransformerDecoder,
        ctc_weight: float = 0.5,
        reverse_weight: float = 0.0,
        beam_size: int = 10,
        decoder_fastertransformer: bool = False,
    ):
        super().__init__()
        self.decoder = decoder
        self.ctc_weight = ctc_weight
        self.reverse_weight = reverse_weight
        self.beam_size = beam_size
        self.decoder_fastertransformer = decoder_fastertransformer

    def forward(
        self,
        encoder_out: torch.Tensor,
        encoder_lens: torch.Tensor,
        hyps_pad_sos_eos: torch.Tensor,
        hyps_lens_sos: torch.Tensor,
        r_hyps_pad_sos_eos: torch.Tensor,
        ctc_score: torch.Tensor,
    ):
        """Encoder
        Args:
            encoder_out: B x T x F
            encoder_lens: B
            hyps_pad_sos_eos: B x beam x (T2+1),
                        hyps with sos & eos and padded by ignore id
            hyps_lens_sos: B x beam, length for each hyp with sos
            r_hyps_pad_sos_eos: B x beam x (T2+1),
                    reversed hyps with sos & eos and padded by ignore id
            ctc_score: B x beam, ctc score for each hyp
        Returns:
            decoder_out: B x beam x T2 x V
            r_decoder_out: B x beam x T2 x V
            best_index: B
        """
        B, T, F = encoder_out.shape
        bz = self.beam_size
        B2 = B * bz
        encoder_out = encoder_out.repeat(1, bz, 1).view(B2, T, F)
        encoder_mask = ~make_pad_mask(encoder_lens, T).unsqueeze(1)
        encoder_mask = encoder_mask.repeat(1, bz, 1).view(B2, 1, T)
        T2 = hyps_pad_sos_eos.shape[2] - 1
        hyps_pad = hyps_pad_sos_eos.view(B2, T2 + 1)
        hyps_lens = hyps_lens_sos.view(
            B2,
        )
        hyps_pad_sos = hyps_pad[:, :-1].contiguous()
        hyps_pad_eos = hyps_pad[:, 1:].contiguous()

        r_hyps_pad = r_hyps_pad_sos_eos.view(B2, T2 + 1)
        r_hyps_pad_sos = r_hyps_pad[:, :-1].contiguous()
        r_hyps_pad_eos = r_hyps_pad[:, 1:].contiguous()

        decoder_out, r_decoder_out, _ = self.decoder(
            encoder_out,
            encoder_mask,
            hyps_pad_sos,
            hyps_lens,
            r_hyps_pad_sos,
            self.reverse_weight,
        )
        decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
        V = decoder_out.shape[-1]
        decoder_out = decoder_out.view(B2, T2, V)
        mask = ~make_pad_mask(hyps_lens, T2)  # B2 x T2
        # mask index, remove ignore id
        index = torch.unsqueeze(hyps_pad_eos * mask, 2)
        score = decoder_out.gather(2, index).squeeze(2)  # B2 X T2
        # mask padded part
        score = score * mask
        decoder_out = decoder_out.view(B, bz, T2, V)
        if self.reverse_weight > 0:
            r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
            r_decoder_out = r_decoder_out.view(B2, T2, V)
            index = torch.unsqueeze(r_hyps_pad_eos * mask, 2)
            r_score = r_decoder_out.gather(2, index).squeeze(2)
            r_score = r_score * mask
            score = score * (1 - self.reverse_weight) + self.reverse_weight * r_score
            r_decoder_out = r_decoder_out.view(B, bz, T2, V)
        score = torch.sum(score, axis=1)  # B2
        score = torch.reshape(score, (B, bz)) + self.ctc_weight * ctc_score
        best_index = torch.argmax(score, dim=1)
        if self.decoder_fastertransformer:
            return decoder_out, best_index
        else:
            return best_index


def to_numpy(tensors):
    out = []
    if type(tensors) == torch.tensor:
        tensors = [tensors]
    for tensor in tensors:
        if tensor.requires_grad:
            tensor = tensor.detach().cpu().numpy()
        else:
            tensor = tensor.cpu().numpy()
        out.append(tensor)
    return out


def test(xlist, blist, rtol=1e-3, atol=1e-5, tolerate_small_mismatch=True):
    for a, b in zip(xlist, blist):
        try:
            torch.testing.assert_allclose(a, b, rtol=rtol, atol=atol)
        except AssertionError as error:
            if tolerate_small_mismatch:
                print(error)
            else:
                raise


def export_offline_encoder(model, configs, args, logger, encoder_onnx_path):
    bz = 32
    seq_len = 100
    beam_size = args.beam_size
    feature_size = configs["input_dim"]

    speech = torch.randn(bz, seq_len, feature_size, dtype=torch.float32)
    speech_lens = torch.randint(low=10, high=seq_len, size=(bz,), dtype=torch.int32)
    encoder = Encoder(model.encoder, model.ctc, beam_size)
    encoder.eval()

    torch.onnx.export(
        encoder,
        (speech, speech_lens),
        encoder_onnx_path,
        export_params=True,
        opset_version=13,
        do_constant_folding=True,
        input_names=["speech", "speech_lengths"],
        output_names=[
            "encoder_out",
            "encoder_out_lens",
            "ctc_log_probs",
            "beam_log_probs",
            "beam_log_probs_idx",
        ],
        dynamic_axes={
            "speech": {0: "B", 1: "T"},
            "speech_lengths": {0: "B"},
            "encoder_out": {0: "B", 1: "T_OUT"},
            "encoder_out_lens": {0: "B"},
            "ctc_log_probs": {0: "B", 1: "T_OUT"},
            "beam_log_probs": {0: "B", 1: "T_OUT"},
            "beam_log_probs_idx": {0: "B", 1: "T_OUT"},
        },
        verbose=False,
    )

    with torch.no_grad():
        o0, o1, o2, o3, o4 = encoder(speech, speech_lens)

    providers = ["CUDAExecutionProvider"]
    ort_session = onnxruntime.InferenceSession(encoder_onnx_path, providers=providers)
    ort_inputs = {"speech": to_numpy(speech), "speech_lengths": to_numpy(speech_lens)}
    ort_outs = ort_session.run(None, ort_inputs)

    # check encoder output
    test(to_numpy([o0, o1, o2, o3, o4]), ort_outs)
    logger.info("export offline onnx encoder succeed!")
    onnx_config = {
        "beam_size": args.beam_size,
        "reverse_weight": args.reverse_weight,
        "ctc_weight": args.ctc_weight,
        "fp16": args.fp16,
    }
    return onnx_config


def export_online_encoder(model, configs, args, logger, encoder_onnx_path):
    decoding_chunk_size = args.decoding_chunk_size
    subsampling = model.encoder.embed.subsampling_rate
    context = model.encoder.embed.right_context + 1
    decoding_window = (decoding_chunk_size - 1) * subsampling + context
    batch_size = 32
    audio_len = decoding_window
    feature_size = configs["input_dim"]
    output_size = configs["encoder_conf"]["output_size"]
    num_layers = configs["encoder_conf"]["num_blocks"]
    # in transformer the cnn module will not be available
    transformer = False
    cnn_module_kernel = configs["encoder_conf"].get("cnn_module_kernel", 1) - 1
    if not cnn_module_kernel:
        transformer = True
    num_decoding_left_chunks = args.num_decoding_left_chunks
    required_cache_size = decoding_chunk_size * num_decoding_left_chunks
    if configs["encoder"] == "squeezeformer":
        encoder = StreamingSqueezeformerEncoder(
            model, required_cache_size, args.beam_size
        )
    elif configs["encoder"] == "efficientConformer":
        encoder = StreamingEfficientConformerEncoder(
            model, required_cache_size, args.beam_size
        )
    else:
        encoder = StreamingEncoder(
            model, required_cache_size, args.beam_size, transformer
        )
    encoder.eval()

    # begin to export encoder
    chunk_xs = torch.randn(batch_size, audio_len, feature_size, dtype=torch.float32)
    chunk_lens = torch.ones(batch_size, dtype=torch.int32) * audio_len

    offset = torch.arange(0, batch_size).unsqueeze(1)
    #  (elayers, b, head, cache_t1, d_k * 2)
    head = configs["encoder_conf"]["attention_heads"]
    d_k = configs["encoder_conf"]["output_size"] // head
    att_cache = torch.randn(
        batch_size, num_layers, head, required_cache_size, d_k * 2, dtype=torch.float32
    )
    cnn_cache = torch.randn(
        batch_size, num_layers, output_size, cnn_module_kernel, dtype=torch.float32
    )

    cache_mask = torch.ones(batch_size, 1, required_cache_size, dtype=torch.float32)
    input_names = [
        "chunk_xs",
        "chunk_lens",
        "offset",
        "att_cache",
        "cnn_cache",
        "cache_mask",
    ]
    output_names = [
        "log_probs",
        "log_probs_idx",
        "chunk_out",
        "chunk_out_lens",
        "r_offset",
        "r_att_cache",
        "r_cnn_cache",
        "r_cache_mask",
    ]
    input_tensors = (chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask)
    if transformer:
        output_names.pop(6)

    all_names = input_names + output_names
    dynamic_axes = {}
    for name in all_names:
        # only the first dimension is dynamic
        # all other dimension is fixed
        dynamic_axes[name] = {0: "B"}

    torch.onnx.export(
        encoder,
        input_tensors,
        encoder_onnx_path,
        export_params=True,
        opset_version=14,
        do_constant_folding=True,
        input_names=input_names,
        output_names=output_names,
        dynamic_axes=dynamic_axes,
        verbose=False,
    )

    with torch.no_grad():
        torch_outs = encoder(
            chunk_xs, chunk_lens, offset, att_cache, cnn_cache, cache_mask
        )
    if transformer:
        torch_outs = list(torch_outs).pop(6)
    ort_session = onnxruntime.InferenceSession(
        encoder_onnx_path, providers=["CUDAExecutionProvider"]
    )
    ort_inputs = {}

    input_tensors = to_numpy(input_tensors)
    for idx, name in enumerate(input_names):
        ort_inputs[name] = input_tensors[idx]
    if transformer:
        del ort_inputs["cnn_cache"]
    ort_outs = ort_session.run(None, ort_inputs)
    test(to_numpy(torch_outs), ort_outs, rtol=1e-03, atol=1e-05)
    logger.info("export to onnx streaming encoder succeed!")
    onnx_config = {
        "subsampling_rate": subsampling,
        "context": context,
        "decoding_chunk_size": decoding_chunk_size,
        "num_decoding_left_chunks": num_decoding_left_chunks,
        "beam_size": args.beam_size,
        "fp16": args.fp16,
        "feat_size": feature_size,
        "decoding_window": decoding_window,
        "cnn_module_kernel_cache": cnn_module_kernel,
    }
    return onnx_config


def export_rescoring_decoder(
    model, configs, args, logger, decoder_onnx_path, decoder_fastertransformer
):
    bz, seq_len = 32, 100
    beam_size = args.beam_size
    decoder = Decoder(
        model.decoder,
        model.ctc_weight,
        model.reverse_weight,
        beam_size,
        decoder_fastertransformer,
    )
    decoder.eval()

    hyps_pad_sos_eos = torch.randint(low=3, high=1000, size=(bz, beam_size, seq_len))
    hyps_lens_sos = torch.randint(
        low=3, high=seq_len, size=(bz, beam_size), dtype=torch.int32
    )
    r_hyps_pad_sos_eos = torch.randint(low=3, high=1000, size=(bz, beam_size, seq_len))

    output_size = configs["encoder_conf"]["output_size"]
    encoder_out = torch.randn(bz, seq_len, output_size, dtype=torch.float32)
    encoder_out_lens = torch.randint(low=3, high=seq_len, size=(bz,), dtype=torch.int32)
    ctc_score = torch.randn(bz, beam_size, dtype=torch.float32)

    input_names = [
        "encoder_out",
        "encoder_out_lens",
        "hyps_pad_sos_eos",
        "hyps_lens_sos",
        "r_hyps_pad_sos_eos",
        "ctc_score",
    ]
    output_names = ["best_index"]
    if decoder_fastertransformer:
        output_names.insert(0, "decoder_out")

    torch.onnx.export(
        decoder,
        (
            encoder_out,
            encoder_out_lens,
            hyps_pad_sos_eos,
            hyps_lens_sos,
            r_hyps_pad_sos_eos,
            ctc_score,
        ),
        decoder_onnx_path,
        export_params=True,
        opset_version=13,
        do_constant_folding=True,
        input_names=input_names,
        output_names=output_names,
        dynamic_axes={
            "encoder_out": {0: "B", 1: "T"},
            "encoder_out_lens": {0: "B"},
            "hyps_pad_sos_eos": {0: "B", 2: "T2"},
            "hyps_lens_sos": {0: "B"},
            "r_hyps_pad_sos_eos": {0: "B", 2: "T2"},
            "ctc_score": {0: "B"},
            "best_index": {0: "B"},
        },
        verbose=False,
    )
    with torch.no_grad():
        o0 = decoder(
            encoder_out,
            encoder_out_lens,
            hyps_pad_sos_eos,
            hyps_lens_sos,
            r_hyps_pad_sos_eos,
            ctc_score,
        )
    providers = ["CUDAExecutionProvider"]
    ort_session = onnxruntime.InferenceSession(decoder_onnx_path, providers=providers)

    input_tensors = [
        encoder_out,
        encoder_out_lens,
        hyps_pad_sos_eos,
        hyps_lens_sos,
        r_hyps_pad_sos_eos,
        ctc_score,
    ]
    ort_inputs = {}
    input_tensors = to_numpy(input_tensors)
    for idx, name in enumerate(input_names):
        ort_inputs[name] = input_tensors[idx]

    # if model.reverse weight == 0,
    # the r_hyps_pad will be removed
    # from the onnx decoder since it doen't play any role
    if model.reverse_weight == 0:
        del ort_inputs["r_hyps_pad_sos_eos"]
    ort_outs = ort_session.run(None, ort_inputs)

    # check decoder output
    if decoder_fastertransformer:
        test(to_numpy(o0), ort_outs, rtol=1e-03, atol=1e-05)
    else:
        test(to_numpy([o0]), ort_outs, rtol=1e-03, atol=1e-05)
    logger.info("export to onnx decoder succeed!")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="export x86_gpu model")
    parser.add_argument("--config", required=True, help="config file")
    parser.add_argument("--checkpoint", required=True, help="checkpoint model")
    parser.add_argument(
        "--cmvn_file",
        required=False,
        default="",
        type=str,
        help="global_cmvn file, default path is in config file",
    )
    parser.add_argument(
        "--reverse_weight",
        default=-1.0,
        type=float,
        required=False,
        help="reverse weight for bitransformer," + "default value is in config file",
    )
    parser.add_argument(
        "--ctc_weight",
        default=-1.0,
        type=float,
        required=False,
        help="ctc weight, default value is in config file",
    )
    parser.add_argument(
        "--beam_size",
        default=10,
        type=int,
        required=False,
        help="beam size would be ctc output size",
    )
    parser.add_argument(
        "--output_onnx_dir",
        default="onnx_model",
        help="output onnx encoder and decoder directory",
    )
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="whether to export fp16 model, default false",
    )
    # arguments for streaming encoder
    parser.add_argument(
        "--streaming",
        action="store_true",
        help="whether to export streaming encoder, default false",
    )
    parser.add_argument(
        "--decoding_chunk_size",
        default=16,
        type=int,
        required=False,
        help="the decoding chunk size, <=0 is not supported",
    )
    parser.add_argument(
        "--num_decoding_left_chunks",
        default=5,
        type=int,
        required=False,
        help="number of left chunks, <= 0 is not supported",
    )
    parser.add_argument(
        "--decoder_fastertransformer",
        action="store_true",
        help="return decoder_out and best_index for ft",
    )
    args = parser.parse_args()

    torch.manual_seed(0)
    torch.set_printoptions(precision=10)

    with open(args.config, "r") as fin:
        configs = yaml.load(fin, Loader=yaml.FullLoader)
    if args.cmvn_file and os.path.exists(args.cmvn_file):
        configs["cmvn_file"] = args.cmvn_file
    if args.reverse_weight != -1.0 and "reverse_weight" in configs["model_conf"]:
        configs["model_conf"]["reverse_weight"] = args.reverse_weight
        print("Update reverse weight to", args.reverse_weight)
    if args.ctc_weight != -1:
        print("Update ctc weight to ", args.ctc_weight)
        configs["model_conf"]["ctc_weight"] = args.ctc_weight
    configs["encoder_conf"]["use_dynamic_chunk"] = False

    model = init_model(configs)
    load_checkpoint(model, args.checkpoint)
    model.eval()

    if not os.path.exists(args.output_onnx_dir):
        os.mkdir(args.output_onnx_dir)
    encoder_onnx_path = os.path.join(args.output_onnx_dir, "encoder.onnx")
    export_enc_func = None
    if args.streaming:
        assert args.decoding_chunk_size > 0
        assert args.num_decoding_left_chunks > 0
        export_enc_func = export_online_encoder
    else:
        export_enc_func = export_offline_encoder

    onnx_config = export_enc_func(model, configs, args, logger, encoder_onnx_path)

    decoder_onnx_path = os.path.join(args.output_onnx_dir, "decoder.onnx")
    export_rescoring_decoder(
        model, configs, args, logger, decoder_onnx_path, args.decoder_fastertransformer
    )

    if args.fp16:
        try:
            import onnxmltools
            from onnxmltools.utils.float16_converter import convert_float_to_float16
        except ImportError:
            print("Please install onnxmltools!")
            sys.exit(1)
        encoder_onnx_model = onnxmltools.utils.load_model(encoder_onnx_path)
        encoder_onnx_model = convert_float_to_float16(encoder_onnx_model)
        encoder_onnx_path = os.path.join(args.output_onnx_dir, "encoder_fp16.onnx")
        onnxmltools.utils.save_model(encoder_onnx_model, encoder_onnx_path)
        decoder_onnx_model = onnxmltools.utils.load_model(decoder_onnx_path)
        decoder_onnx_model = convert_float_to_float16(decoder_onnx_model)
        decoder_onnx_path = os.path.join(args.output_onnx_dir, "decoder_fp16.onnx")
        onnxmltools.utils.save_model(decoder_onnx_model, decoder_onnx_path)
    # dump configurations

    config_dir = os.path.join(args.output_onnx_dir, "config.yaml")
    with open(config_dir, "w") as out:
        yaml.dump(onnx_config, out)