File size: 6,195 Bytes
3fad000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn


dependencies = ["torch"]


_DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2"


def _make_dinov2_model_name(arch_name: str, patch_size: int) -> str:
    compact_arch_name = arch_name.replace("_", "")[:4]
    return f"dinov2_{compact_arch_name}{patch_size}"


def _make_dinov2_model(
    *,
    arch_name: str = "vit_large",
    img_size: int = 518,
    patch_size: int = 14,
    init_values: float = 1.0,
    ffn_layer: str = "mlp",
    block_chunks: int = 0,
    pretrained: bool = True,
    **kwargs,
):
    from dinov2.models import vision_transformer as vits

    model_name = _make_dinov2_model_name(arch_name, patch_size)
    vit_kwargs = dict(
        img_size=img_size,
        patch_size=patch_size,
        init_values=init_values,
        ffn_layer=ffn_layer,
        block_chunks=block_chunks,
    )
    vit_kwargs.update(**kwargs)
    model = vits.__dict__[arch_name](**vit_kwargs)

    if pretrained:
        url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}_pretrain.pth"
        state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
        model.load_state_dict(state_dict, strict=False)

    return model


def dinov2_vits14(*, pretrained: bool = True, **kwargs):
    """
    DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, **kwargs)


def dinov2_vitb14(*, pretrained: bool = True, **kwargs):
    """
    DINOv2 ViT-B/14 model pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, **kwargs)


def dinov2_vitl14(*, pretrained: bool = True, **kwargs):
    """
    DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, **kwargs)


def dinov2_vitg14(*, pretrained: bool = True, **kwargs):
    """
    DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset.
    """
    return _make_dinov2_model(arch_name="vit_giant2", ffn_layer="swiglufused", pretrained=pretrained, **kwargs)


def _make_dinov2_linear_head(
    *,
    model_name: str = "dinov2_vitl14",
    embed_dim: int = 1024,
    layers: int = 4,
    pretrained: bool = True,
    **kwargs,
):
    assert layers in (1, 4), f"Unsupported number of layers: {layers}"
    linear_head = nn.Linear((1 + layers) * embed_dim, 1_000)

    if pretrained:
        layers_str = str(layers) if layers == 4 else ""
        url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}_linear{layers_str}_head.pth"
        state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu")
        linear_head.load_state_dict(state_dict, strict=False)

    return linear_head


class _LinearClassifierWrapper(nn.Module):
    def __init__(self, *, backbone: nn.Module, linear_head: nn.Module, layers: int = 4):
        super().__init__()
        self.backbone = backbone
        self.linear_head = linear_head
        self.layers = layers

    def forward(self, x):
        if self.layers == 1:
            x = self.backbone.forward_features(x)
            cls_token = x["x_norm_clstoken"]
            patch_tokens = x["x_norm_patchtokens"]
            # fmt: off
            linear_input = torch.cat([
                cls_token,
                patch_tokens.mean(dim=1),
            ], dim=1)
            # fmt: on
        elif self.layers == 4:
            x = self.backbone.get_intermediate_layers(x, n=4, return_class_token=True)
            # fmt: off
            linear_input = torch.cat([
                x[0][1],
                x[1][1],
                x[2][1],
                x[3][1],
                x[3][0].mean(dim=1),
            ], dim=1)
            # fmt: on
        else:
            assert False, f"Unsupported number of layers: {self.layers}"
        return self.linear_head(linear_input)


def _make_dinov2_linear_classifier(
    *,
    arch_name: str = "vit_large",
    layers: int = 4,
    pretrained: bool = True,
    **kwargs,
):
    backbone = _make_dinov2_model(arch_name=arch_name, pretrained=pretrained, **kwargs)

    embed_dim = backbone.embed_dim
    patch_size = backbone.patch_size
    model_name = _make_dinov2_model_name(arch_name, patch_size)
    linear_head = _make_dinov2_linear_head(
        model_name=model_name, embed_dim=embed_dim, layers=layers, pretrained=pretrained
    )

    return _LinearClassifierWrapper(backbone=backbone, linear_head=linear_head, layers=layers)


def dinov2_vits14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs):
    """
    Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-S/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
    """
    return _make_dinov2_linear_classifier(arch_name="vit_small", layers=layers, pretrained=pretrained, **kwargs)


def dinov2_vitb14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs):
    """
    Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-B/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
    """
    return _make_dinov2_linear_classifier(arch_name="vit_base", layers=layers, pretrained=pretrained, **kwargs)


def dinov2_vitl14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs):
    """
    Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-L/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
    """
    return _make_dinov2_linear_classifier(arch_name="vit_large", layers=layers, pretrained=pretrained, **kwargs)


def dinov2_vitg14_lc(*, layers: int = 4, pretrained: bool = True, **kwargs):
    """
    Linear classifier (1 or 4 layers) on top of a DINOv2 ViT-g/14 backbone (optionally) pretrained on the LVD-142M dataset and trained on ImageNet-1k.
    """
    return _make_dinov2_linear_classifier(
        arch_name="vit_giant2", layers=layers, ffn_layer="swiglufused", pretrained=pretrained, **kwargs
    )