File size: 26,306 Bytes
c709b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
# Modified by Jialian Wu from
# https://github.com/microsoft/GenerativeImage2Text/blob/main/generativeimage2text/layers/decoder.py
# and https://github.com/kdexd/virtex
from torch import nn
import torch
import functools
from torch.nn import functional as F
import warnings


class TextualHead(nn.Module):
    def __init__(self,
                 visual_feature_size: int, vocab_size: int, hidden_size: int):
        super().__init__()
        self.visual_feature_size = visual_feature_size
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size

    @property
    def textual_feature_size(self):
        return self.hidden_size


class WordAndPositionalEmbedding(nn.Module):
    def __init__(
        self,
        vocab_size: int,
        hidden_size: int,
        dropout: float = 0.0,
        max_caption_length: int = 30,
        padding_idx: int = 0,
    ):
        super().__init__()
        self.vocab_size = vocab_size
        self.padding_idx = padding_idx

        #self.words = nn.Embedding(vocab_size, hidden_size, padding_idx=padding_idx)
        self.words = nn.Embedding(vocab_size, hidden_size)

        # We provide no "padding index" for positional embeddings. We zero out
        # the positional embeddings of padded positions as a post-processing.
        self.positions = nn.Embedding(max_caption_length, hidden_size)
        self.layer_norm = nn.LayerNorm(
            hidden_size, eps=1e-8, elementwise_affine=True
        )
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, tokens: torch.Tensor):
        position_indices = self._create_position_indices(tokens)

        # shape: (batch_size, max_caption_length, hidden_size)
        word_embeddings = self.words(tokens)
        position_embeddings = self.positions(position_indices)

        # shape: (batch_size, max_caption_length, hidden_size)
        embeddings = self.layer_norm(word_embeddings + position_embeddings)
        embeddings = self.dropout(embeddings)

        return embeddings

    @functools.lru_cache(maxsize=128)
    def _create_position_indices(self, tokens: torch.Tensor):

        # Create position indices of the same size as token indices.
        batch_size, max_caption_length = tokens.size()
        positions = torch.arange(
            max_caption_length, dtype=tokens.dtype, device=tokens.device
        )
        # shape: (batch_size, max_caption_length)
        positions = positions.unsqueeze(0).expand(batch_size, max_caption_length)
        return positions


class BertEncoderAsDecoder(nn.Module):
    def __init__(self, encoder):
        super().__init__()
        self.encoder = encoder

    def forward(self, tgt, memory,
                tgt_mask=None,
                tgt_key_padding_mask=None,
                memory_key_padding_mask=None,
                tgt_bi_valid_mask=None,
                encoder_history_states=None,
                ):
        assert tgt_key_padding_mask is None, 'not supported'
        assert tgt_mask.dim() == 2
        assert tgt_mask.shape[0] == tgt_mask.shape[1]
        # tgt_mask should always be 0/negative infinity
        tgt = tgt.transpose(0, 1)
        memory = memory.transpose(0, 1)

        hidden_states = torch.cat((memory, tgt), dim=1)
        num_tgt = tgt.shape[1]
        num_memory = memory.shape[1]
        device = tgt.device
        dtype = tgt.dtype
        top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype)
        top_right = torch.full((num_memory, num_tgt), float('-inf'), device=tgt.device, dtype=dtype,)
        bottom_left = torch.zeros((num_tgt, num_memory), dtype=dtype, device=tgt_mask.device,)
        left = torch.cat((top_left, bottom_left), dim=0)
        right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0)

        full_attention_mask = torch.cat((left, right), dim=1)[None, :]

        if memory_key_padding_mask is None:
            memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device)
        # if it is False, it means valid. That is, it is not a padding
        assert memory_key_padding_mask.dtype == torch.bool
        zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype)
        zero_negative_infinity[memory_key_padding_mask] = float('-inf')
        full_attention_mask = full_attention_mask.expand((memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + num_tgt))
        full_attention_mask = full_attention_mask.clone()
        origin_left = full_attention_mask[:, :, :num_memory]
        update = zero_negative_infinity[:, None, :]
        full_attention_mask[:, :, :num_memory] = origin_left + update

        if tgt_bi_valid_mask is not None:
            # verify the correctness
            bs = full_attention_mask.shape[0]
            # during inference, tgt_bi_valid_mask's length is not changed, but
            # num_tgt can be increased
            max_valid_target = tgt_bi_valid_mask.shape[1]
            mask = tgt_bi_valid_mask[:, None, :].expand((bs, num_memory+num_tgt, max_valid_target))
            full_attention_mask[:, :, num_memory:(num_memory+max_valid_target)][mask] = 0

        # add axis for multi-head
        full_attention_mask = full_attention_mask[:, None, :, :]

        if encoder_history_states is None:
            result = self.encoder(
                hidden_states=hidden_states,
                attention_mask=full_attention_mask,
                encoder_history_states=encoder_history_states,
            )
            result = list(result)
            result[0] = result[0][:, num_memory:].transpose(0, 1)
            if self.encoder.output_hidden_states:
                return result[0], result[1]
            else:
                # make it back-compatible
                return result[0]
        else:
            encoder_out = self.encoder(
                hidden_states=hidden_states[:, -1:],
                attention_mask=full_attention_mask[:, :, -1:],
                encoder_history_states=encoder_history_states,
            )
            result = encoder_out[0].transpose(0, 1)
            if self.encoder.output_hidden_states:
                return result, encoder_out[1]
            else:
                return result


def create_transformer(decoder_type, norm_type,
                   textual_feature_size,
                   attention_heads,
                   feedforward_size,
                   dropout,
                   num_layers,
                   output_hidden_states=False,
                   use_mlp_wrapper=None,
                   use_act_checkpoint=True,
                   ):
    assert norm_type in ['post', 'pre']
    if decoder_type is None:
        LayerClass = (
            nn.TransformerDecoderLayer
            if norm_type == "post"
            else PreNormTransformerDecoderLayer
        )
        _layer = LayerClass(
            textual_feature_size,
            attention_heads,
            dim_feedforward=feedforward_size,
            dropout=dropout,
            activation="gelu",
        )
        return nn.TransformerDecoder(_layer, num_layers)
    elif decoder_type == 'bert_en':
        from .modeling_bert import BertConfig, BertEncoder
        config = BertConfig(
            vocab_size_or_config_json_file=30522,
            hidden_size=textual_feature_size,
            num_hidden_layers=num_layers,
            num_attention_heads=attention_heads,
            intermediate_size=feedforward_size,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            layer_norm_eps=1e-12,
        )
        config.pre_norm = (norm_type == 'pre')
        config.use_mlp_wrapper = use_mlp_wrapper
        config.output_hidden_states = output_hidden_states
        encoder = BertEncoder(config, use_act_checkpoint=use_act_checkpoint)
        return BertEncoderAsDecoder(encoder)


class PreNormTransformerDecoderLayer(nn.TransformerDecoderLayer):
    def forward(self, tgt, memory, tgt_mask=None, memory_mask=None,
                tgt_key_padding_mask=None, memory_key_padding_mask=None):
        # fmt: off
        # We use the members (modules) from super-class, just the order of
        # operations is changed here. First layernorm, then attention.
        tgt2 = self.norm1(tgt)
        tgt2, _ = self.self_attn(
            tgt2, tgt2, tgt2, attn_mask=tgt_mask,
            key_padding_mask=tgt_key_padding_mask
        )
        tgt = tgt + self.dropout1(tgt2)

        # Layernorm first, then decoder attention.
        tgt2 = self.norm2(tgt)
        tgt2, _ = self.multihead_attn(
            tgt2, memory, memory, attn_mask=memory_mask,
            key_padding_mask=memory_key_padding_mask
        )
        tgt = tgt + self.dropout2(tgt2)

        # Layernorm first, then transformation through feedforward network.
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt


class TransformerDecoderTextualHead(TextualHead):
    def __init__(
        self,
        object_feature_size: int,
        vocab_size: int,
        hidden_size: int,
        num_layers: int,
        attention_heads: int,
        feedforward_size: int,
        dropout: float = 0.1,
        norm_type: str = "post",
        mask_future_positions: bool = True,
        max_caption_length: int = 1024,
        padding_idx: int = 0,
        decoder_type=None,
        not_tie_weight=None,
        output_hidden_states=None,
        use_mlp_wrapper=None,
        use_act_checkpoint=True,
    ):
        super().__init__(object_feature_size, vocab_size, hidden_size)
        self.num_layers = num_layers
        self.attention_heads = attention_heads
        self.feedforward_size = feedforward_size
        self.dropout = dropout
        assert mask_future_positions
        self.padding_idx = padding_idx

        self.object_feature_projection = nn.Sequential(
            nn.Linear(object_feature_size, self.textual_feature_size),
            nn.LayerNorm(self.textual_feature_size))

        self.embedding = WordAndPositionalEmbedding(
            self.vocab_size,
            self.textual_feature_size,
            dropout=dropout,
            max_caption_length=max_caption_length,
            padding_idx=padding_idx,
        )
        self.transformer = create_transformer(
            decoder_type=decoder_type,
            norm_type=norm_type,
            textual_feature_size=self.textual_feature_size,
            attention_heads=self.attention_heads,
            feedforward_size=self.feedforward_size,
            dropout=dropout,
            num_layers=self.num_layers,
            output_hidden_states=output_hidden_states,
            use_mlp_wrapper=use_mlp_wrapper,
            use_act_checkpoint=use_act_checkpoint,
        )
        self.apply(self._init_weights)

        # Create an output linear layer and tie the input and output word
        # embeddings to reduce parametejs.
        self.output = nn.Linear(self.textual_feature_size, vocab_size)
        if not not_tie_weight:
            self.output.weight = self.embedding.words.weight

    @staticmethod
    def _init_weights(module):
        """Initialize weights like BERT - N(0.0, 0.02), bias = 0."""

        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=0.02)
        elif isinstance(module, nn.MultiheadAttention):
            module.in_proj_weight.data.normal_(mean=0.0, std=0.02)
            module.out_proj.weight.data.normal_(mean=0.0, std=0.02)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def forward(
        self,
        hidden_states,
        text_tokens,
    ):
        projected_object_features = self.object_feature_projection(hidden_states) if hidden_states is not None else None
        batch_size, max_text_length = text_tokens.size()
        text_embeddings = self.embedding(text_tokens)

        # An additive mask for masking the future (one direction).
        uni_mask_zero_neg = self._generate_future_mask(
            max_text_length, text_embeddings.dtype, text_embeddings.device
        )

        # We transpose the first two dimensions of tokens embeddings and visual
        # features, as required by decoder.
        text_embeddings = text_embeddings.transpose(0, 1)

        projected_object_features = projected_object_features.transpose(0, 1)

        # if transformer here is the pytorch/decoder, there is no chance, the
        # output is always tensor
        trans_out = self.transformer(
            text_embeddings,
            projected_object_features,
            tgt_mask=uni_mask_zero_neg,
        )
        if isinstance(trans_out, tuple):
            textual_features = trans_out[0]
        else:
            assert isinstance(trans_out, torch.Tensor)
            textual_features = trans_out
        # Undo the transpose and bring batch to dim 0.
        # shape: (batch_size, max_caption_length, hidden_size)
        textual_features = textual_features.transpose(0, 1)

        # shape: (batch_size, max_caption_length, vocab_size)
        output_logits = self.output(textual_features)
        if isinstance(trans_out, tuple):
            return output_logits, trans_out[1]
        else:
            return output_logits

    def _generate_future_mask(
        self, size: int, dtype: torch.dtype, device: torch.device
    ):
        # Default mask is for forward direction. Flip for backward direction.
        mask = torch.triu(
            torch.ones(size, size, device=device, dtype=dtype), diagonal=1
        )
        mask = mask.masked_fill(mask == 1, float("-inf"))
        return mask


class AutoRegressiveBeamSearch(object):
    def __init__(
        self,
        end_token_id: int,
        max_steps: int = 50,
        beam_size: int = 5,
        objectdet=True,
        per_node_beam_size: int = 2,
    ):
        self._eos_index = end_token_id
        self.max_steps = max_steps
        self.beam_size = beam_size
        self.objectdet = objectdet
        self.per_node_beam_size = per_node_beam_size or beam_size

    def search(self, begin_tokens, step):
        if self.beam_size > 1 and self.objectdet:
            only_return_best = False
        else:
            only_return_best = True

        batch_size = begin_tokens.size()[0]

        predictions = begin_tokens.unsqueeze(1).expand((batch_size, self.beam_size, begin_tokens.shape[-1]))
        # Calculate the first timestep. This is done outside the main loop
        # because we are going from a single decoder input (the output from the
        # encoder) to the top `beam_size` decoder outputs. On the other hand,
        # within the main loop we are going from the `beam_size` elements of the
        # beam to `beam_size`^2 candidates from which we will select the top
        # `beam_size` elements for the next iteration.
        # shape: (batch_size, num_classes)
        start_class_logits = step(begin_tokens)

        # Convert logits to logprobs.
        # shape: (batch_size * beam_size, vocab_size)
        start_class_logprobs = F.log_softmax(start_class_logits, dim=1)

        num_classes = start_class_logprobs.size()[1]

        # shape: (batch_size, beam_size), (batch_size, beam_size)
        start_top_logprobs, start_predicted_classes = start_class_logprobs.topk(
            self.beam_size
        )

        if (
            self.beam_size == 1
            and (start_predicted_classes == self._eos_index).all()
        ):
            warnings.warn(
                "Empty object description predicted. You may want to increase beam"
                "size or ensure your step function is working properly.",
                RuntimeWarning,
            )
            if only_return_best:
                return start_predicted_classes, start_top_logprobs
            else:
                return start_predicted_classes.unsqueeze(-1), start_top_logprobs

        # The log probs for the last time step.
        # shape: (batch_size, beam_size)
        last_logprobs = start_top_logprobs

        # shape: (batch_size, beam_size, sequence_length)
        predictions = torch.cat([predictions, start_predicted_classes.unsqueeze(-1)], dim=-1)

        # Log probability tensor that mandates that the end token is selected.
        # shape: (batch_size * beam_size, num_classes)
        logprobs_after_end = start_class_logprobs.new_full(
            (batch_size * self.beam_size, num_classes), float("-inf")
        )
        logprobs_after_end[:, self._eos_index] = 0.0

        logits_after_end = start_class_logprobs.new_full(
            (batch_size * self.beam_size, num_classes), float("-inf")
        )
        logits_after_end[:, self._eos_index] = 0

        while predictions.shape[-1] < self.max_steps:
            # shape: (batch_size * beam_size,)
            last_predictions = predictions[:, :, -1].reshape(batch_size * self.beam_size)

            # If every predicted token from the last step is `self._eos_index`,
            # then we can stop early.
            if (last_predictions == self._eos_index).all():
                break

            predictions_so_far = predictions.view(
                batch_size * self.beam_size, -1
            )
            # shape: (batch_size * beam_size, num_classes)
            class_logits = step(predictions_so_far)

            # Set logprobs of last predicted tokens as high negative value to avoid
            # repetition in description.
            class_logits = class_logits.scatter(1, predictions_so_far[:, -1].view((-1, 1)), -10000)

            # shape: (batch_size * beam_size, num_classes)
            last_predictions_expanded = last_predictions.unsqueeze(-1).expand(
                batch_size * self.beam_size, num_classes
            )

            # Here we are finding any beams where we predicted the end token in
            # the previous timestep and replacing the distribution with a
            # one-hot distribution, forcing the beam to predict the end token
            # this timestep as well.
            class_logits = torch.where(
                last_predictions_expanded == self._eos_index,
                logits_after_end,
                class_logits,
            )

            # Convert logits to logprobs.
            # shape: (batch_size * beam_size, vocab_size)
            class_logprobs = F.log_softmax(class_logits, dim=1)

            # shape (both): (batch_size * beam_size, per_node_beam_size)
            top_logprobs, predicted_classes = class_logprobs.topk(
                self.per_node_beam_size
            )

            # Here we expand the last log probs to `(batch_size * beam_size,
            # per_node_beam_size)` so that we can add them to the current log
            # probs for this timestep. This lets us maintain the log
            # probability of each element on the beam.
            # shape: (batch_size * beam_size, per_node_beam_size)
            expanded_last_logprobs = (
                last_logprobs.unsqueeze(2)
                .expand(batch_size, self.beam_size, self.per_node_beam_size)
                .reshape(batch_size * self.beam_size, self.per_node_beam_size)
            )
            # shape: (batch_size * beam_size, per_node_beam_size)
            summed_top_logprobs = top_logprobs + expanded_last_logprobs

            # shape: (batch_size, beam_size * per_node_beam_size)
            reshaped_summed = summed_top_logprobs.reshape(
                batch_size, self.beam_size * self.per_node_beam_size
            )
            # shape: (batch_size, beam_size * per_node_beam_size)
            reshaped_predicted_classes = predicted_classes.reshape(
                batch_size, self.beam_size * self.per_node_beam_size
            )
            # Append the predictions to the current beam.
            reshaped_beam = (
                predictions.view(batch_size * self.beam_size, 1, -1)
                .repeat(1, self.per_node_beam_size, 1)
                .reshape(batch_size, self.beam_size * self.per_node_beam_size, -1)
            )
            # batch_size, (beam_size * per_node_beach_size), #token
            reshaped_beam = torch.cat([reshaped_beam, reshaped_predicted_classes.unsqueeze(-1)], dim=-1)

            # Keep only the top `beam_size` beam indices.
            # shape: (batch_size, beam_size), (batch_size, beam_size)
            restricted_beam_logprobs, restricted_beam_indices = reshaped_summed.topk(
                self.beam_size
            )
            predictions = reshaped_beam.gather(
                1, restricted_beam_indices.unsqueeze(-1).repeat(1,1,reshaped_beam.shape[-1])
            )

            # shape: (batch_size, beam_size)
            last_logprobs = restricted_beam_logprobs

        if not torch.isfinite(last_logprobs).all():
            warnings.warn(
                "Infinite log probs encountered. Some final descriptions may not "
                "make sense. This can happen when the beam size is larger than"
                " the number of valid (non-zero probability) transitions that "
                "the step function produces.",
                RuntimeWarning,
            )

        # Optionally select best beam and its logprobs.
        if only_return_best:
            # shape: (batch_size, sequence_length)
            predictions = predictions[:, 0, :]
            last_logprobs = last_logprobs[:, 0]
        num_valid = (predictions != self._eos_index).sum(dim=-1)
        num_valid += (predictions == self._eos_index).sum(dim=-1) > 0
        num_valid = num_valid - begin_tokens.shape[1]
        num_valid = num_valid.clip(min=1)

        last_logprobs = last_logprobs / num_valid

        return predictions, last_logprobs


class GRiTTextDecoder(nn.Module):
    def __init__(
        self,
        transformer,
        begin_token_id=101,
        beamsearch_decode=None,
        loss_type=None,
        tokenizer=None,
    ):
        super().__init__()
        self.textual = transformer
        self.padding_idx = self.textual.padding_idx

        self.begin_token_id = begin_token_id
        self.beamsearch_decode = beamsearch_decode
        self.tokenizer = tokenizer

        if loss_type is None:
            self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_idx)
        elif loss_type == 'smooth':
            self.loss = SmoothLabelCrossEntropyLoss(ignore_index=self.padding_idx)
        else:
            raise NotImplementedError(loss_type)

    def forward(self, batch):
        object_features = batch['object_features']

        if self.training:
            caption_token_input = batch["text_tokens"]

            output_logits = self.textual(
                object_features,
                caption_token_input,
            )

            if 'need_predict' in batch:
                # in place should also be good, but we do not choose that for
                # safety as we may use it in prediction results in future
                target = batch["text_tokens"].clone()
                target[batch['need_predict'] == 0] = self.padding_idx
            else:
                target = batch["text_tokens"]

            feat = output_logits[:, :-1].contiguous()
            target = target[:, 1:].contiguous()
            feat = feat.view(-1, self.textual.vocab_size)
            target = target.view(-1)

            valid_mask = target != self.padding_idx
            target = target[valid_mask]
            feat = feat[valid_mask]
            loss = self.loss(feat, target)

            return loss
        else:
            output_dict = self.infer(object_features)
        return output_dict

    def infer(self, object_features):
        batch_size = object_features.size(0)
        begin_tokens = object_features.new_full(
            (batch_size, 1), self.begin_token_id
        ).long()

        decoding_step = functools.partial(
            self.decoding_step, object_features
        )

        object_description_tokens, logprobs = self.beamsearch_decode.search(
            begin_tokens, decoding_step
        )

        output_dict = {
            'predictions': object_description_tokens,
            'logprobs': logprobs,
        }

        return output_dict

    def decoding_step(self, object_features, partial_text):
        batch_size = object_features.shape[0]
        beam_size = int(partial_text.size(0) / batch_size)
        if beam_size > 1:
            batch_size, num_token, channels = object_features.size()
            object_features = object_features.unsqueeze(1).repeat(1, beam_size, 1, 1)
            object_features = object_features.view(
                batch_size * beam_size, num_token, channels
            )

        text_lengths = torch.ones_like(partial_text)
        if len(text_lengths.size()) != 2:
            partial_text = partial_text.unsqueeze(1)

        # shape: (batch_size * beam_size, partial_caption_length, vocab_size)
        logits = self.textual(
            object_features,
            partial_text,
        )

        return logits[:, -1, :].float()


class SmoothLabelCrossEntropyLoss(nn.Module):
    def __init__(self, eps=0.1, log_prefix='', ignore_index=None):
        super().__init__()
        self.eps = eps
        self.log_soft = nn.LogSoftmax(dim=1)
        self.kl = nn.KLDivLoss(reduction='none')

        self.iter = 0
        self.max_loss = 0
        self.min_loss = 0
        self.log_prefix = log_prefix
        self.ignore_index = ignore_index

    def forward(self, feature, target):
        feature = feature.float()
        if self.ignore_index is not None:
            valid_mask = target != self.ignore_index
            target = target[valid_mask]
            feature = feature[valid_mask]
        assert target.numel() > 0
        self.iter += 1
        eps = self.eps
        n_class = feature.size(1)
        one_hot = torch.zeros_like(feature).scatter(1, target.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = self.log_soft(feature)
        loss = self.kl(log_prb, one_hot)
        return loss.sum(dim=1).mean()