Spaces:
Runtime error
Runtime error
File size: 7,617 Bytes
c709b60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import json
import os
from collections import defaultdict
# This mapping is extracted from the official LVIS mapping:
# https://github.com/lvis-dataset/lvis-api/blob/master/data/coco_to_synset.json
COCO_SYNSET_CATEGORIES = [
{"synset": "person.n.01", "coco_cat_id": 1},
{"synset": "bicycle.n.01", "coco_cat_id": 2},
{"synset": "car.n.01", "coco_cat_id": 3},
{"synset": "motorcycle.n.01", "coco_cat_id": 4},
{"synset": "airplane.n.01", "coco_cat_id": 5},
{"synset": "bus.n.01", "coco_cat_id": 6},
{"synset": "train.n.01", "coco_cat_id": 7},
{"synset": "truck.n.01", "coco_cat_id": 8},
{"synset": "boat.n.01", "coco_cat_id": 9},
{"synset": "traffic_light.n.01", "coco_cat_id": 10},
{"synset": "fireplug.n.01", "coco_cat_id": 11},
{"synset": "stop_sign.n.01", "coco_cat_id": 13},
{"synset": "parking_meter.n.01", "coco_cat_id": 14},
{"synset": "bench.n.01", "coco_cat_id": 15},
{"synset": "bird.n.01", "coco_cat_id": 16},
{"synset": "cat.n.01", "coco_cat_id": 17},
{"synset": "dog.n.01", "coco_cat_id": 18},
{"synset": "horse.n.01", "coco_cat_id": 19},
{"synset": "sheep.n.01", "coco_cat_id": 20},
{"synset": "beef.n.01", "coco_cat_id": 21},
{"synset": "elephant.n.01", "coco_cat_id": 22},
{"synset": "bear.n.01", "coco_cat_id": 23},
{"synset": "zebra.n.01", "coco_cat_id": 24},
{"synset": "giraffe.n.01", "coco_cat_id": 25},
{"synset": "backpack.n.01", "coco_cat_id": 27},
{"synset": "umbrella.n.01", "coco_cat_id": 28},
{"synset": "bag.n.04", "coco_cat_id": 31},
{"synset": "necktie.n.01", "coco_cat_id": 32},
{"synset": "bag.n.06", "coco_cat_id": 33},
{"synset": "frisbee.n.01", "coco_cat_id": 34},
{"synset": "ski.n.01", "coco_cat_id": 35},
{"synset": "snowboard.n.01", "coco_cat_id": 36},
{"synset": "ball.n.06", "coco_cat_id": 37},
{"synset": "kite.n.03", "coco_cat_id": 38},
{"synset": "baseball_bat.n.01", "coco_cat_id": 39},
{"synset": "baseball_glove.n.01", "coco_cat_id": 40},
{"synset": "skateboard.n.01", "coco_cat_id": 41},
{"synset": "surfboard.n.01", "coco_cat_id": 42},
{"synset": "tennis_racket.n.01", "coco_cat_id": 43},
{"synset": "bottle.n.01", "coco_cat_id": 44},
{"synset": "wineglass.n.01", "coco_cat_id": 46},
{"synset": "cup.n.01", "coco_cat_id": 47},
{"synset": "fork.n.01", "coco_cat_id": 48},
{"synset": "knife.n.01", "coco_cat_id": 49},
{"synset": "spoon.n.01", "coco_cat_id": 50},
{"synset": "bowl.n.03", "coco_cat_id": 51},
{"synset": "banana.n.02", "coco_cat_id": 52},
{"synset": "apple.n.01", "coco_cat_id": 53},
{"synset": "sandwich.n.01", "coco_cat_id": 54},
{"synset": "orange.n.01", "coco_cat_id": 55},
{"synset": "broccoli.n.01", "coco_cat_id": 56},
{"synset": "carrot.n.01", "coco_cat_id": 57},
{"synset": "frank.n.02", "coco_cat_id": 58},
{"synset": "pizza.n.01", "coco_cat_id": 59},
{"synset": "doughnut.n.02", "coco_cat_id": 60},
{"synset": "cake.n.03", "coco_cat_id": 61},
{"synset": "chair.n.01", "coco_cat_id": 62},
{"synset": "sofa.n.01", "coco_cat_id": 63},
{"synset": "pot.n.04", "coco_cat_id": 64},
{"synset": "bed.n.01", "coco_cat_id": 65},
{"synset": "dining_table.n.01", "coco_cat_id": 67},
{"synset": "toilet.n.02", "coco_cat_id": 70},
{"synset": "television_receiver.n.01", "coco_cat_id": 72},
{"synset": "laptop.n.01", "coco_cat_id": 73},
{"synset": "mouse.n.04", "coco_cat_id": 74},
{"synset": "remote_control.n.01", "coco_cat_id": 75},
{"synset": "computer_keyboard.n.01", "coco_cat_id": 76},
{"synset": "cellular_telephone.n.01", "coco_cat_id": 77},
{"synset": "microwave.n.02", "coco_cat_id": 78},
{"synset": "oven.n.01", "coco_cat_id": 79},
{"synset": "toaster.n.02", "coco_cat_id": 80},
{"synset": "sink.n.01", "coco_cat_id": 81},
{"synset": "electric_refrigerator.n.01", "coco_cat_id": 82},
{"synset": "book.n.01", "coco_cat_id": 84},
{"synset": "clock.n.01", "coco_cat_id": 85},
{"synset": "vase.n.01", "coco_cat_id": 86},
{"synset": "scissors.n.01", "coco_cat_id": 87},
{"synset": "teddy.n.01", "coco_cat_id": 88},
{"synset": "hand_blower.n.01", "coco_cat_id": 89},
{"synset": "toothbrush.n.01", "coco_cat_id": 90},
]
def cocofy_lvis(input_filename, output_filename):
"""
Filter LVIS instance segmentation annotations to remove all categories that are not included in
COCO. The new json files can be used to evaluate COCO AP using `lvis-api`. The category ids in
the output json are the incontiguous COCO dataset ids.
Args:
input_filename (str): path to the LVIS json file.
output_filename (str): path to the COCOfied json file.
"""
with open(input_filename, "r") as f:
lvis_json = json.load(f)
lvis_annos = lvis_json.pop("annotations")
cocofied_lvis = copy.deepcopy(lvis_json)
lvis_json["annotations"] = lvis_annos
# Mapping from lvis cat id to coco cat id via synset
lvis_cat_id_to_synset = {cat["id"]: cat["synset"] for cat in lvis_json["categories"]}
synset_to_coco_cat_id = {x["synset"]: x["coco_cat_id"] for x in COCO_SYNSET_CATEGORIES}
# Synsets that we will keep in the dataset
synsets_to_keep = set(synset_to_coco_cat_id.keys())
coco_cat_id_with_instances = defaultdict(int)
new_annos = []
ann_id = 1
for ann in lvis_annos:
lvis_cat_id = ann["category_id"]
synset = lvis_cat_id_to_synset[lvis_cat_id]
if synset not in synsets_to_keep:
continue
coco_cat_id = synset_to_coco_cat_id[synset]
new_ann = copy.deepcopy(ann)
new_ann["category_id"] = coco_cat_id
new_ann["id"] = ann_id
ann_id += 1
new_annos.append(new_ann)
coco_cat_id_with_instances[coco_cat_id] += 1
cocofied_lvis["annotations"] = new_annos
for image in cocofied_lvis["images"]:
for key in ["not_exhaustive_category_ids", "neg_category_ids"]:
new_category_list = []
for lvis_cat_id in image[key]:
synset = lvis_cat_id_to_synset[lvis_cat_id]
if synset not in synsets_to_keep:
continue
coco_cat_id = synset_to_coco_cat_id[synset]
new_category_list.append(coco_cat_id)
coco_cat_id_with_instances[coco_cat_id] += 1
image[key] = new_category_list
coco_cat_id_with_instances = set(coco_cat_id_with_instances.keys())
new_categories = []
for cat in lvis_json["categories"]:
synset = cat["synset"]
if synset not in synsets_to_keep:
continue
coco_cat_id = synset_to_coco_cat_id[synset]
if coco_cat_id not in coco_cat_id_with_instances:
continue
new_cat = copy.deepcopy(cat)
new_cat["id"] = coco_cat_id
new_categories.append(new_cat)
cocofied_lvis["categories"] = new_categories
with open(output_filename, "w") as f:
json.dump(cocofied_lvis, f)
print("{} is COCOfied and stored in {}.".format(input_filename, output_filename))
if __name__ == "__main__":
dataset_dir = os.path.join(os.getenv("DETECTRON2_DATASETS", "datasets"), "lvis")
for s in ["lvis_v0.5_train", "lvis_v0.5_val"]:
print("Start COCOfing {}.".format(s))
cocofy_lvis(
os.path.join(dataset_dir, "{}.json".format(s)),
os.path.join(dataset_dir, "{}_cocofied.json".format(s)),
)
|