File size: 7,617 Bytes
c709b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.

import copy
import json
import os
from collections import defaultdict

# This mapping is extracted from the official LVIS mapping:
# https://github.com/lvis-dataset/lvis-api/blob/master/data/coco_to_synset.json
COCO_SYNSET_CATEGORIES = [
    {"synset": "person.n.01", "coco_cat_id": 1},
    {"synset": "bicycle.n.01", "coco_cat_id": 2},
    {"synset": "car.n.01", "coco_cat_id": 3},
    {"synset": "motorcycle.n.01", "coco_cat_id": 4},
    {"synset": "airplane.n.01", "coco_cat_id": 5},
    {"synset": "bus.n.01", "coco_cat_id": 6},
    {"synset": "train.n.01", "coco_cat_id": 7},
    {"synset": "truck.n.01", "coco_cat_id": 8},
    {"synset": "boat.n.01", "coco_cat_id": 9},
    {"synset": "traffic_light.n.01", "coco_cat_id": 10},
    {"synset": "fireplug.n.01", "coco_cat_id": 11},
    {"synset": "stop_sign.n.01", "coco_cat_id": 13},
    {"synset": "parking_meter.n.01", "coco_cat_id": 14},
    {"synset": "bench.n.01", "coco_cat_id": 15},
    {"synset": "bird.n.01", "coco_cat_id": 16},
    {"synset": "cat.n.01", "coco_cat_id": 17},
    {"synset": "dog.n.01", "coco_cat_id": 18},
    {"synset": "horse.n.01", "coco_cat_id": 19},
    {"synset": "sheep.n.01", "coco_cat_id": 20},
    {"synset": "beef.n.01", "coco_cat_id": 21},
    {"synset": "elephant.n.01", "coco_cat_id": 22},
    {"synset": "bear.n.01", "coco_cat_id": 23},
    {"synset": "zebra.n.01", "coco_cat_id": 24},
    {"synset": "giraffe.n.01", "coco_cat_id": 25},
    {"synset": "backpack.n.01", "coco_cat_id": 27},
    {"synset": "umbrella.n.01", "coco_cat_id": 28},
    {"synset": "bag.n.04", "coco_cat_id": 31},
    {"synset": "necktie.n.01", "coco_cat_id": 32},
    {"synset": "bag.n.06", "coco_cat_id": 33},
    {"synset": "frisbee.n.01", "coco_cat_id": 34},
    {"synset": "ski.n.01", "coco_cat_id": 35},
    {"synset": "snowboard.n.01", "coco_cat_id": 36},
    {"synset": "ball.n.06", "coco_cat_id": 37},
    {"synset": "kite.n.03", "coco_cat_id": 38},
    {"synset": "baseball_bat.n.01", "coco_cat_id": 39},
    {"synset": "baseball_glove.n.01", "coco_cat_id": 40},
    {"synset": "skateboard.n.01", "coco_cat_id": 41},
    {"synset": "surfboard.n.01", "coco_cat_id": 42},
    {"synset": "tennis_racket.n.01", "coco_cat_id": 43},
    {"synset": "bottle.n.01", "coco_cat_id": 44},
    {"synset": "wineglass.n.01", "coco_cat_id": 46},
    {"synset": "cup.n.01", "coco_cat_id": 47},
    {"synset": "fork.n.01", "coco_cat_id": 48},
    {"synset": "knife.n.01", "coco_cat_id": 49},
    {"synset": "spoon.n.01", "coco_cat_id": 50},
    {"synset": "bowl.n.03", "coco_cat_id": 51},
    {"synset": "banana.n.02", "coco_cat_id": 52},
    {"synset": "apple.n.01", "coco_cat_id": 53},
    {"synset": "sandwich.n.01", "coco_cat_id": 54},
    {"synset": "orange.n.01", "coco_cat_id": 55},
    {"synset": "broccoli.n.01", "coco_cat_id": 56},
    {"synset": "carrot.n.01", "coco_cat_id": 57},
    {"synset": "frank.n.02", "coco_cat_id": 58},
    {"synset": "pizza.n.01", "coco_cat_id": 59},
    {"synset": "doughnut.n.02", "coco_cat_id": 60},
    {"synset": "cake.n.03", "coco_cat_id": 61},
    {"synset": "chair.n.01", "coco_cat_id": 62},
    {"synset": "sofa.n.01", "coco_cat_id": 63},
    {"synset": "pot.n.04", "coco_cat_id": 64},
    {"synset": "bed.n.01", "coco_cat_id": 65},
    {"synset": "dining_table.n.01", "coco_cat_id": 67},
    {"synset": "toilet.n.02", "coco_cat_id": 70},
    {"synset": "television_receiver.n.01", "coco_cat_id": 72},
    {"synset": "laptop.n.01", "coco_cat_id": 73},
    {"synset": "mouse.n.04", "coco_cat_id": 74},
    {"synset": "remote_control.n.01", "coco_cat_id": 75},
    {"synset": "computer_keyboard.n.01", "coco_cat_id": 76},
    {"synset": "cellular_telephone.n.01", "coco_cat_id": 77},
    {"synset": "microwave.n.02", "coco_cat_id": 78},
    {"synset": "oven.n.01", "coco_cat_id": 79},
    {"synset": "toaster.n.02", "coco_cat_id": 80},
    {"synset": "sink.n.01", "coco_cat_id": 81},
    {"synset": "electric_refrigerator.n.01", "coco_cat_id": 82},
    {"synset": "book.n.01", "coco_cat_id": 84},
    {"synset": "clock.n.01", "coco_cat_id": 85},
    {"synset": "vase.n.01", "coco_cat_id": 86},
    {"synset": "scissors.n.01", "coco_cat_id": 87},
    {"synset": "teddy.n.01", "coco_cat_id": 88},
    {"synset": "hand_blower.n.01", "coco_cat_id": 89},
    {"synset": "toothbrush.n.01", "coco_cat_id": 90},
]


def cocofy_lvis(input_filename, output_filename):
    """
    Filter LVIS instance segmentation annotations to remove all categories that are not included in
    COCO. The new json files can be used to evaluate COCO AP using `lvis-api`. The category ids in
    the output json are the incontiguous COCO dataset ids.

    Args:
        input_filename (str): path to the LVIS json file.
        output_filename (str): path to the COCOfied json file.
    """

    with open(input_filename, "r") as f:
        lvis_json = json.load(f)

    lvis_annos = lvis_json.pop("annotations")
    cocofied_lvis = copy.deepcopy(lvis_json)
    lvis_json["annotations"] = lvis_annos

    # Mapping from lvis cat id to coco cat id via synset
    lvis_cat_id_to_synset = {cat["id"]: cat["synset"] for cat in lvis_json["categories"]}
    synset_to_coco_cat_id = {x["synset"]: x["coco_cat_id"] for x in COCO_SYNSET_CATEGORIES}
    # Synsets that we will keep in the dataset
    synsets_to_keep = set(synset_to_coco_cat_id.keys())
    coco_cat_id_with_instances = defaultdict(int)

    new_annos = []
    ann_id = 1
    for ann in lvis_annos:
        lvis_cat_id = ann["category_id"]
        synset = lvis_cat_id_to_synset[lvis_cat_id]
        if synset not in synsets_to_keep:
            continue
        coco_cat_id = synset_to_coco_cat_id[synset]
        new_ann = copy.deepcopy(ann)
        new_ann["category_id"] = coco_cat_id
        new_ann["id"] = ann_id
        ann_id += 1
        new_annos.append(new_ann)
        coco_cat_id_with_instances[coco_cat_id] += 1
    cocofied_lvis["annotations"] = new_annos

    for image in cocofied_lvis["images"]:
        for key in ["not_exhaustive_category_ids", "neg_category_ids"]:
            new_category_list = []
            for lvis_cat_id in image[key]:
                synset = lvis_cat_id_to_synset[lvis_cat_id]
                if synset not in synsets_to_keep:
                    continue
                coco_cat_id = synset_to_coco_cat_id[synset]
                new_category_list.append(coco_cat_id)
                coco_cat_id_with_instances[coco_cat_id] += 1
            image[key] = new_category_list

    coco_cat_id_with_instances = set(coco_cat_id_with_instances.keys())

    new_categories = []
    for cat in lvis_json["categories"]:
        synset = cat["synset"]
        if synset not in synsets_to_keep:
            continue
        coco_cat_id = synset_to_coco_cat_id[synset]
        if coco_cat_id not in coco_cat_id_with_instances:
            continue
        new_cat = copy.deepcopy(cat)
        new_cat["id"] = coco_cat_id
        new_categories.append(new_cat)
    cocofied_lvis["categories"] = new_categories

    with open(output_filename, "w") as f:
        json.dump(cocofied_lvis, f)
    print("{} is COCOfied and stored in {}.".format(input_filename, output_filename))


if __name__ == "__main__":
    dataset_dir = os.path.join(os.getenv("DETECTRON2_DATASETS", "datasets"), "lvis")
    for s in ["lvis_v0.5_train", "lvis_v0.5_val"]:
        print("Start COCOfing {}.".format(s))
        cocofy_lvis(
            os.path.join(dataset_dir, "{}.json".format(s)),
            os.path.join(dataset_dir, "{}_cocofied.json".format(s)),
        )