File size: 88,915 Bytes
c4598a9 948686f 31d480d c4598a9 948686f 61d758d c4598a9 e9cfe70 c4598a9 948686f e9cfe70 948686f c4598a9 948686f 61d758d 948686f c4598a9 61d758d c4598a9 948686f e9cfe70 c4598a9 31d480d c4598a9 948686f c4598a9 61d758d c4598a9 61d758d 948686f c4598a9 31d480d 61d758d c4598a9 e9cfe70 c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 948686f 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d c4598a9 948686f c4598a9 61d758d 31d480d e9cfe70 61d758d e9cfe70 61d758d 31d480d 61d758d 31d480d e9cfe70 a2b637a 31d480d a2b637a 97ea8a4 a2b637a e9cfe70 a2b637a e9cfe70 31d480d 97ea8a4 e9cfe70 97ea8a4 31d480d e9cfe70 31d480d e9cfe70 31d480d a2b637a 97ea8a4 a2b637a 31d480d 97ea8a4 a2b637a 31d480d 97ea8a4 a2b637a e9cfe70 a2b637a e9cfe70 31d480d e9cfe70 31d480d e9cfe70 31d480d e9cfe70 31d480d e9cfe70 61d758d 31d480d 61d758d e9cfe70 61d758d 948686f 61d758d 31d480d 61d758d c4598a9 61d758d e9cfe70 31d480d e9cfe70 31d480d e9cfe70 61d758d e9cfe70 31d480d e9cfe70 61d758d e9cfe70 61d758d 31d480d e9cfe70 61d758d e9cfe70 31d480d e9cfe70 61d758d e9cfe70 31d480d e9cfe70 61d758d c4598a9 e9cfe70 c4598a9 a2b637a 61d758d 31d480d 61d758d e9cfe70 61d758d c4598a9 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d c4598a9 31d480d c4598a9 31d480d c4598a9 61d758d c4598a9 31d480d c4598a9 31d480d c4598a9 61d758d c4598a9 31d480d c4598a9 61d758d c4598a9 31d480d c4598a9 31d480d c4598a9 61d758d 31d480d 61d758d c4598a9 61d758d c4598a9 31d480d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 31d480d 61d758d c4598a9 61d758d c4598a9 61d758d 31d480d 61d758d c4598a9 31d480d c4598a9 31d480d 61d758d e9cfe70 31d480d 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d c4598a9 61d758d 31d480d 61d758d e9cfe70 61d758d e9cfe70 61d758d e9cfe70 a2b637a e9cfe70 61d758d e9cfe70 61d758d a2b637a 61d758d a2b637a e9cfe70 a2b637a e9cfe70 61d758d e9cfe70 61d758d e9cfe70 61d758d a2b637a 31d480d a2b637a e9cfe70 61d758d e9cfe70 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d e9cfe70 61d758d a2b637a 61d758d e9cfe70 61d758d e9cfe70 61d758d 31d480d 61d758d e9cfe70 61d758d 31d480d 61d758d 31d480d 61d758d e9cfe70 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d e9cfe70 61d758d 31d480d 61d758d 31d480d 61d758d a2b637a 61d758d a2b637a 61d758d 31d480d a2b637a 61d758d a2b637a 61d758d a2b637a 61d758d 31d480d a2b637a 61d758d e9cfe70 61d758d e9cfe70 61d758d 31d480d 61d758d 31d480d 61d758d 31d480d 61d758d e9cfe70 61d758d e9cfe70 61d758d a2b637a 61d758d e9cfe70 61d758d e9cfe70 31d480d 61d758d e9cfe70 61d758d e9cfe70 31d480d e9cfe70 31d480d e9cfe70 61d758d c4598a9 31d480d 61d758d c4598a9 61d758d 948686f c4598a9 61d758d 31d480d 61d758d 948686f 61d758d c4598a9 61d758d c4598a9 61d758d 31d480d 61d758d c4598a9 31d480d 61d758d 31d480d c4598a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 |
"""Gradio front-end for Fault_Classification_PMU_Data models.
The application loads a CNN-LSTM model (and accompanying scaler/metadata)
produced by ``fault_classification_pmu.py`` and exposes a streamlined
prediction interface optimised for Hugging Face Spaces deployment. It supports
raw PMU time-series CSV uploads as well as manual comma separated feature
vectors.
"""
from __future__ import annotations
import json
import os
import shutil
os.environ.setdefault("CUDA_VISIBLE_DEVICES", "-1")
os.environ.setdefault("TF_CPP_MIN_LOG_LEVEL", "2")
os.environ.setdefault("TF_ENABLE_ONEDNN_OPTS", "0")
import re
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import gradio as gr
import joblib
import numpy as np
import pandas as pd
import requests
from huggingface_hub import hf_hub_download
from tensorflow.keras.models import load_model
from fault_classification_pmu import (
DEFAULT_FEATURE_COLUMNS as TRAINING_DEFAULT_FEATURE_COLUMNS,
LABEL_GUESS_CANDIDATES as TRAINING_LABEL_GUESSES,
train_from_dataframe,
)
# --------------------------------------------------------------------------------------
# Configuration
# --------------------------------------------------------------------------------------
DEFAULT_FEATURE_COLUMNS: List[str] = list(TRAINING_DEFAULT_FEATURE_COLUMNS)
DEFAULT_SEQUENCE_LENGTH = 32
DEFAULT_STRIDE = 4
LOCAL_MODEL_FILE = os.environ.get("PMU_MODEL_FILE", "pmu_cnn_lstm_model.keras")
LOCAL_SCALER_FILE = os.environ.get("PMU_SCALER_FILE", "pmu_feature_scaler.pkl")
LOCAL_METADATA_FILE = os.environ.get("PMU_METADATA_FILE", "pmu_metadata.json")
MODEL_OUTPUT_DIR = Path(os.environ.get("PMU_MODEL_DIR", "model")).resolve()
MODEL_OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
HUB_REPO = os.environ.get("PMU_HUB_REPO", "")
HUB_MODEL_FILENAME = os.environ.get("PMU_HUB_MODEL_FILENAME", LOCAL_MODEL_FILE)
HUB_SCALER_FILENAME = os.environ.get("PMU_HUB_SCALER_FILENAME", LOCAL_SCALER_FILE)
HUB_METADATA_FILENAME = os.environ.get("PMU_HUB_METADATA_FILENAME", LOCAL_METADATA_FILE)
ENV_MODEL_PATH = "PMU_MODEL_PATH"
ENV_SCALER_PATH = "PMU_SCALER_PATH"
ENV_METADATA_PATH = "PMU_METADATA_PATH"
# --------------------------------------------------------------------------------------
# Utility functions for loading artifacts
# --------------------------------------------------------------------------------------
def download_from_hub(filename: str) -> Optional[Path]:
if not HUB_REPO or not filename:
return None
try:
print(f"Downloading {filename} from {HUB_REPO} ...")
# Add timeout to prevent hanging
path = hf_hub_download(repo_id=HUB_REPO, filename=filename)
print("Downloaded", path)
return Path(path)
except Exception as exc: # pragma: no cover - logging convenience
print("Failed to download", filename, "from", HUB_REPO, ":", exc)
print("Continuing without pre-trained model...")
return None
def resolve_artifact(
local_name: str, env_var: str, hub_filename: str
) -> Optional[Path]:
print(f"Resolving artifact: {local_name}, env: {env_var}, hub: {hub_filename}")
candidates = [Path(local_name)] if local_name else []
if local_name:
candidates.append(MODEL_OUTPUT_DIR / Path(local_name).name)
env_value = os.environ.get(env_var)
if env_value:
candidates.append(Path(env_value))
for candidate in candidates:
if candidate and candidate.exists():
print(f"Found local artifact: {candidate}")
return candidate
print(f"No local artifacts found, checking hub...")
# Only try to download if we have a hub repo configured
if HUB_REPO:
return download_from_hub(hub_filename)
else:
print("No HUB_REPO configured, skipping download")
return None
def load_metadata(path: Optional[Path]) -> Dict:
if path and path.exists():
try:
return json.loads(path.read_text())
except Exception as exc: # pragma: no cover - metadata parsing errors
print("Failed to read metadata", path, exc)
return {}
def try_load_scaler(path: Optional[Path]):
if not path:
return None
try:
scaler = joblib.load(path)
print("Loaded scaler from", path)
return scaler
except Exception as exc:
print("Failed to load scaler", path, exc)
return None
# Initialize paths with error handling
print("Starting application initialization...")
try:
MODEL_PATH = resolve_artifact(LOCAL_MODEL_FILE, ENV_MODEL_PATH, HUB_MODEL_FILENAME)
print(f"Model path resolved: {MODEL_PATH}")
except Exception as e:
print(f"Model path resolution failed: {e}")
MODEL_PATH = None
try:
SCALER_PATH = resolve_artifact(
LOCAL_SCALER_FILE, ENV_SCALER_PATH, HUB_SCALER_FILENAME
)
print(f"Scaler path resolved: {SCALER_PATH}")
except Exception as e:
print(f"Scaler path resolution failed: {e}")
SCALER_PATH = None
try:
METADATA_PATH = resolve_artifact(
LOCAL_METADATA_FILE, ENV_METADATA_PATH, HUB_METADATA_FILENAME
)
print(f"Metadata path resolved: {METADATA_PATH}")
except Exception as e:
print(f"Metadata path resolution failed: {e}")
METADATA_PATH = None
try:
METADATA = load_metadata(METADATA_PATH)
print(f"Metadata loaded: {len(METADATA)} entries")
except Exception as e:
print(f"Metadata loading failed: {e}")
METADATA = {}
# Queuing configuration
QUEUE_MAX_SIZE = 32
# Apply a small per-event concurrency limit to avoid relying on the deprecated
# ``concurrency_count`` parameter when enabling Gradio's request queue.
EVENT_CONCURRENCY_LIMIT = 2
def try_load_model(path: Optional[Path], model_type: str, model_format: str):
if not path:
return None
try:
if model_type == "svm" or model_format == "joblib":
model = joblib.load(path)
else:
model = load_model(path)
print("Loaded model from", path)
return model
except Exception as exc: # pragma: no cover - runtime diagnostics
print("Failed to load model", path, exc)
return None
FEATURE_COLUMNS: List[str] = list(DEFAULT_FEATURE_COLUMNS)
LABEL_CLASSES: List[str] = []
LABEL_COLUMN: str = "Fault"
SEQUENCE_LENGTH: int = DEFAULT_SEQUENCE_LENGTH
DEFAULT_WINDOW_STRIDE: int = DEFAULT_STRIDE
MODEL_TYPE: str = "cnn_lstm"
MODEL_FORMAT: str = "keras"
def _model_output_path(filename: str) -> str:
return str(MODEL_OUTPUT_DIR / Path(filename).name)
MODEL_FILENAME_BY_TYPE: Dict[str, str] = {
"cnn_lstm": Path(LOCAL_MODEL_FILE).name,
"tcn": "pmu_tcn_model.keras",
"svm": "pmu_svm_model.joblib",
}
REQUIRED_PMU_COLUMNS: Tuple[str, ...] = tuple(DEFAULT_FEATURE_COLUMNS)
TRAINING_UPLOAD_DIR = Path(
os.environ.get("PMU_TRAINING_UPLOAD_DIR", "training_uploads")
)
TRAINING_UPLOAD_DIR.mkdir(parents=True, exist_ok=True)
TRAINING_DATA_REPO = os.environ.get(
"PMU_TRAINING_DATA_REPO", "VincentCroft/ThesisModelData"
)
TRAINING_DATA_BRANCH = os.environ.get("PMU_TRAINING_DATA_BRANCH", "main")
TRAINING_DATA_DIR = Path(os.environ.get("PMU_TRAINING_DATA_DIR", "training_dataset"))
TRAINING_DATA_DIR.mkdir(parents=True, exist_ok=True)
GITHUB_CONTENT_CACHE: Dict[str, List[Dict[str, Any]]] = {}
APP_CSS = """
#available-files-section {
position: relative;
display: flex;
flex-direction: column;
gap: 0.75rem;
border-radius: 0.75rem;
isolation: isolate;
}
#available-files-grid {
position: relative;
overflow: visible;
}
#available-files-grid .form {
position: static;
min-height: 16rem;
}
#available-files-grid .wrap {
display: grid;
grid-template-columns: repeat(4, minmax(0, 1fr));
gap: 0.5rem;
max-height: 24rem;
min-height: 16rem;
overflow-y: auto;
padding-right: 0.25rem;
}
#available-files-grid .wrap > div {
min-width: 0;
}
#available-files-grid .wrap label {
margin: 0;
display: flex;
align-items: center;
padding: 0.45rem 0.65rem;
border-radius: 0.65rem;
background-color: rgba(255, 255, 255, 0.05);
border: 1px solid rgba(255, 255, 255, 0.08);
transition: background-color 0.2s ease, border-color 0.2s ease;
min-height: 2.5rem;
}
#available-files-grid .wrap label:hover {
background-color: rgba(90, 200, 250, 0.16);
border-color: rgba(90, 200, 250, 0.4);
}
#available-files-grid .wrap label span {
overflow: hidden;
text-overflow: ellipsis;
white-space: nowrap;
}
#available-files-section .gradio-loading,
#available-files-grid .gradio-loading {
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
width: 100%;
height: 100%;
display: flex;
align-items: center;
justify-content: center;
background: rgba(10, 14, 23, 0.92);
border-radius: 0.75rem;
z-index: 999;
padding: 1.5rem;
pointer-events: auto;
}
#available-files-section .gradio-loading {
position: absolute;
inset: 0;
width: 100%;
height: 100%;
display: flex;
align-items: center;
justify-content: center;
background: rgba(10, 14, 23, 0.92);
border-radius: 0.75rem;
z-index: 999;
padding: 1.5rem;
pointer-events: auto;
}
#available-files-section .gradio-loading > * {
width: 100%;
}
#available-files-section .gradio-loading progress,
#available-files-section .gradio-loading .progress-bar,
#available-files-section .gradio-loading .loading-progress,
#available-files-section .gradio-loading [role="progressbar"],
#available-files-section .gradio-loading .wrap,
#available-files-section .gradio-loading .inner {
width: 100% !important;
max-width: none !important;
}
#available-files-section .gradio-loading .status,
#available-files-section .gradio-loading .message,
#available-files-section .gradio-loading .label {
text-align: center;
}
#date-browser-row {
gap: 0.75rem;
}
#date-browser-row .date-browser-column {
flex: 1 1 0%;
min-width: 0;
}
#date-browser-row .date-browser-column > .gradio-dropdown,
#date-browser-row .date-browser-column > .gradio-button {
width: 100%;
}
#date-browser-row .date-browser-column > .gradio-dropdown > div {
width: 100%;
}
#date-browser-row .date-browser-column .gradio-button {
justify-content: center;
}
#training-files-summary textarea {
max-height: 12rem;
overflow-y: auto;
}
#download-selected-button {
width: 100%;
position: relative;
z-index: 0;
}
#download-selected-button .gradio-button {
width: 100%;
justify-content: center;
}
#artifact-download-row {
gap: 0.75rem;
}
#artifact-download-row .artifact-download-button {
flex: 1 1 0%;
min-width: 0;
}
#artifact-download-row .artifact-download-button .gradio-button {
width: 100%;
justify-content: center;
}
"""
def _github_cache_key(path: str) -> str:
return path or "__root__"
def _github_api_url(path: str) -> str:
clean_path = path.strip("/")
base = f"https://api.github.com/repos/{TRAINING_DATA_REPO}/contents"
if clean_path:
return f"{base}/{clean_path}?ref={TRAINING_DATA_BRANCH}"
return f"{base}?ref={TRAINING_DATA_BRANCH}"
def list_remote_directory(
path: str = "", *, force_refresh: bool = False
) -> List[Dict[str, Any]]:
key = _github_cache_key(path)
if not force_refresh and key in GITHUB_CONTENT_CACHE:
return GITHUB_CONTENT_CACHE[key]
url = _github_api_url(path)
response = requests.get(url, timeout=30)
if response.status_code != 200:
raise RuntimeError(
f"GitHub API request failed for `{path or '.'}` (status {response.status_code})."
)
payload = response.json()
if not isinstance(payload, list):
raise RuntimeError(
"Unexpected GitHub API payload. Expected a directory listing."
)
GITHUB_CONTENT_CACHE[key] = payload
return payload
def list_remote_years(force_refresh: bool = False) -> List[str]:
entries = list_remote_directory("", force_refresh=force_refresh)
years = [item["name"] for item in entries if item.get("type") == "dir"]
return sorted(years)
def list_remote_months(year: str, *, force_refresh: bool = False) -> List[str]:
if not year:
return []
entries = list_remote_directory(year, force_refresh=force_refresh)
months = [item["name"] for item in entries if item.get("type") == "dir"]
return sorted(months)
def list_remote_days(
year: str, month: str, *, force_refresh: bool = False
) -> List[str]:
if not year or not month:
return []
entries = list_remote_directory(f"{year}/{month}", force_refresh=force_refresh)
days = [item["name"] for item in entries if item.get("type") == "dir"]
return sorted(days)
def list_remote_files(
year: str, month: str, day: str, *, force_refresh: bool = False
) -> List[str]:
if not year or not month or not day:
return []
entries = list_remote_directory(
f"{year}/{month}/{day}", force_refresh=force_refresh
)
files = [item["name"] for item in entries if item.get("type") == "file"]
return sorted(files)
def download_repository_file(year: str, month: str, day: str, filename: str) -> Path:
if not filename:
raise ValueError("Filename cannot be empty when downloading repository data.")
relative_parts = [part for part in (year, month, day, filename) if part]
if len(relative_parts) < 4:
raise ValueError("Provide year, month, day, and filename to download a CSV.")
relative_path = "/".join(relative_parts)
raw_url = (
f"https://raw.githubusercontent.com/{TRAINING_DATA_REPO}/"
f"{TRAINING_DATA_BRANCH}/{relative_path}"
)
response = requests.get(raw_url, stream=True, timeout=120)
if response.status_code != 200:
raise RuntimeError(
f"Failed to download `{relative_path}` (status {response.status_code})."
)
target_dir = TRAINING_DATA_DIR.joinpath(year, month, day)
target_dir.mkdir(parents=True, exist_ok=True)
target_path = target_dir / filename
with open(target_path, "wb") as handle:
for chunk in response.iter_content(chunk_size=1 << 20):
if chunk:
handle.write(chunk)
return target_path
def _normalise_header(name: str) -> str:
return str(name).strip().lower()
def guess_label_from_columns(
columns: Sequence[str], preferred: Optional[str] = None
) -> Optional[str]:
if not columns:
return preferred
lookup = {_normalise_header(col): str(col) for col in columns}
if preferred:
preferred_stripped = preferred.strip()
for col in columns:
if str(col).strip() == preferred_stripped:
return str(col)
preferred_norm = _normalise_header(preferred)
if preferred_norm in lookup:
return lookup[preferred_norm]
for guess in TRAINING_LABEL_GUESSES:
guess_norm = _normalise_header(guess)
if guess_norm in lookup:
return lookup[guess_norm]
for col in columns:
if _normalise_header(col).startswith("fault"):
return str(col)
return str(columns[0])
def summarise_training_files(paths: Sequence[str], notes: Sequence[str]) -> str:
lines = [Path(path).name for path in paths]
lines.extend(notes)
return "\n".join(lines) if lines else "No training files available."
def read_training_status(status_file_path: str) -> str:
"""Read the current training status from file."""
try:
if Path(status_file_path).exists():
with open(status_file_path, "r") as f:
return f.read().strip()
except Exception:
pass
return "Training status unavailable"
def _persist_uploaded_file(file_obj) -> Optional[Path]:
if file_obj is None:
return None
if isinstance(file_obj, (str, Path)):
source = Path(file_obj)
original_name = source.name
else:
source = Path(getattr(file_obj, "name", "") or getattr(file_obj, "path", ""))
original_name = getattr(file_obj, "orig_name", source.name) or source.name
if not source or not source.exists():
return None
original_name = Path(original_name).name or source.name
base_path = Path(original_name)
destination = TRAINING_UPLOAD_DIR / base_path.name
counter = 1
while destination.exists():
suffix = base_path.suffix or ".csv"
destination = TRAINING_UPLOAD_DIR / f"{base_path.stem}_{counter}{suffix}"
counter += 1
shutil.copy2(source, destination)
return destination
def prepare_training_paths(
paths: Sequence[str], current_label: str, cleanup_missing: bool = False
):
valid_paths: List[str] = []
notes: List[str] = []
columns_map: Dict[str, str] = {}
for path in paths:
try:
df = load_measurement_csv(path)
except Exception as exc: # pragma: no cover - user file diagnostics
notes.append(f"⚠️ Skipped {Path(path).name}: {exc}")
if cleanup_missing:
try:
Path(path).unlink(missing_ok=True)
except Exception:
pass
continue
valid_paths.append(str(path))
for col in df.columns:
columns_map[_normalise_header(col)] = str(col)
summary = summarise_training_files(valid_paths, notes)
preferred = current_label or LABEL_COLUMN
dropdown_choices = (
sorted(columns_map.values()) if columns_map else [preferred or LABEL_COLUMN]
)
guessed = guess_label_from_columns(dropdown_choices, preferred)
dropdown_value = guessed or preferred or LABEL_COLUMN
return (
valid_paths,
summary,
gr.update(choices=dropdown_choices, value=dropdown_value),
)
def append_training_files(new_files, existing_paths: Sequence[str], current_label: str):
if isinstance(existing_paths, (str, Path)):
paths: List[str] = [str(existing_paths)]
elif existing_paths is None:
paths = []
else:
paths = list(existing_paths)
if new_files:
for file in new_files:
persisted = _persist_uploaded_file(file)
if persisted is None:
continue
path_str = str(persisted)
if path_str not in paths:
paths.append(path_str)
return prepare_training_paths(paths, current_label, cleanup_missing=True)
def load_repository_training_files(current_label: str, force_refresh: bool = False):
if force_refresh:
# Clearing the cache is enough because downloads are now on-demand.
for cached in list(TRAINING_DATA_DIR.glob("*")):
# On refresh we keep previously downloaded files; no deletion required.
# The flag triggers downstream UI updates only.
break
csv_paths = sorted(
str(path) for path in TRAINING_DATA_DIR.rglob("*.csv") if path.is_file()
)
if not csv_paths:
message = (
"No local database CSVs are available yet. Use the database browser "
"below to download specific days before training."
)
default_label = current_label or LABEL_COLUMN or "Fault"
return (
[],
message,
gr.update(choices=[default_label], value=default_label),
message,
)
valid_paths, summary, label_update = prepare_training_paths(
csv_paths, current_label, cleanup_missing=False
)
info = (
f"Ready with {len(valid_paths)} CSV file(s) cached locally under "
f"the database cache `{TRAINING_DATA_DIR}`."
)
return valid_paths, summary, label_update, info
def refresh_remote_browser(force_refresh: bool = False):
if force_refresh:
GITHUB_CONTENT_CACHE.clear()
try:
years = list_remote_years(force_refresh=force_refresh)
if years:
message = "Select a year, month, and day to list available CSV files."
else:
message = (
"⚠️ No directories were found in the database root. Verify the upstream "
"structure."
)
return (
gr.update(choices=years, value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
message,
)
except Exception as exc:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
f"⚠️ Failed to query database: {exc}",
)
def on_year_change(year: Optional[str]):
if not year:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
"Select a year to continue.",
)
try:
months = list_remote_months(year)
message = (
f"Year `{year}` selected. Choose a month to drill down."
if months
else f"⚠️ No months available under `{year}`."
)
return (
gr.update(choices=months, value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
message,
)
except Exception as exc:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
f"⚠️ Failed to list months: {exc}",
)
def on_month_change(year: Optional[str], month: Optional[str]):
if not year or not month:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
"Select a month to continue.",
)
try:
days = list_remote_days(year, month)
message = (
f"Month `{year}/{month}` ready. Pick a day to view files."
if days
else f"⚠️ No day folders found under `{year}/{month}`."
)
return (
gr.update(choices=days, value=None),
gr.update(choices=[], value=[]),
message,
)
except Exception as exc:
return (
gr.update(choices=[], value=None),
gr.update(choices=[], value=[]),
f"⚠️ Failed to list days: {exc}",
)
def on_day_change(year: Optional[str], month: Optional[str], day: Optional[str]):
if not year or not month or not day:
return (
gr.update(choices=[], value=[]),
"Select a day to load file names.",
)
try:
files = list_remote_files(year, month, day)
message = (
f"{len(files)} file(s) available for `{year}/{month}/{day}`."
if files
else f"⚠️ No CSV files found under `{year}/{month}/{day}`."
)
return (
gr.update(choices=files, value=[]),
message,
)
except Exception as exc:
return (
gr.update(choices=[], value=[]),
f"⚠️ Failed to list files: {exc}",
)
def download_selected_files(
year: Optional[str],
month: Optional[str],
day: Optional[str],
filenames: Sequence[str],
current_label: str,
):
if not filenames:
message = "Select at least one CSV before downloading."
local = load_repository_training_files(current_label)
return (*local, gr.update(), message)
success: List[str] = []
notes: List[str] = []
for filename in filenames:
try:
path = download_repository_file(
year or "", month or "", day or "", filename
)
success.append(str(path))
except Exception as exc:
notes.append(f"⚠️ {filename}: {exc}")
local = load_repository_training_files(current_label)
message_lines = []
if success:
message_lines.append(
f"Downloaded {len(success)} file(s) to the database cache `{TRAINING_DATA_DIR}`."
)
if notes:
message_lines.extend(notes)
if not message_lines:
message_lines.append("No files were downloaded.")
return (*local, gr.update(value=[]), "\n".join(message_lines))
def download_day_bundle(
year: Optional[str],
month: Optional[str],
day: Optional[str],
current_label: str,
):
if not (year and month and day):
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
"Select a year, month, and day before downloading an entire day.",
)
try:
files = list_remote_files(year, month, day)
except Exception as exc:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
f"⚠️ Failed to list CSVs for `{year}/{month}/{day}`: {exc}",
)
if not files:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
f"No CSV files were found for `{year}/{month}/{day}`.",
)
result = list(download_selected_files(year, month, day, files, current_label))
result[-1] = (
f"Downloaded all {len(files)} CSV file(s) for `{year}/{month}/{day}`.\n"
f"{result[-1]}"
)
return tuple(result)
def download_month_bundle(
year: Optional[str], month: Optional[str], current_label: str
):
if not (year and month):
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
"Select a year and month before downloading an entire month.",
)
try:
days = list_remote_days(year, month)
except Exception as exc:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
f"⚠️ Failed to enumerate days for `{year}/{month}`: {exc}",
)
if not days:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
f"No day folders were found for `{year}/{month}`.",
)
downloaded = 0
notes: List[str] = []
for day in days:
try:
files = list_remote_files(year, month, day)
except Exception as exc:
notes.append(f"⚠️ Failed to list `{year}/{month}/{day}`: {exc}")
continue
if not files:
notes.append(f"⚠️ No CSV files in `{year}/{month}/{day}`.")
continue
for filename in files:
try:
download_repository_file(year, month, day, filename)
downloaded += 1
except Exception as exc:
notes.append(f"⚠️ {year}/{month}/{day}/{filename}: {exc}")
local = load_repository_training_files(current_label)
message_lines = []
if downloaded:
message_lines.append(
f"Downloaded {downloaded} CSV file(s) for `{year}/{month}` into the "
f"database cache `{TRAINING_DATA_DIR}`."
)
message_lines.extend(notes)
if not message_lines:
message_lines.append("No files were downloaded.")
return (*local, gr.update(value=[]), "\n".join(message_lines))
def download_year_bundle(year: Optional[str], current_label: str):
if not year:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
"Select a year before downloading an entire year of CSVs.",
)
try:
months = list_remote_months(year)
except Exception as exc:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
f"⚠️ Failed to enumerate months for `{year}`: {exc}",
)
if not months:
local = load_repository_training_files(current_label)
return (
*local,
gr.update(),
f"No month folders were found for `{year}`.",
)
downloaded = 0
notes: List[str] = []
for month in months:
try:
days = list_remote_days(year, month)
except Exception as exc:
notes.append(f"⚠️ Failed to list `{year}/{month}`: {exc}")
continue
if not days:
notes.append(f"⚠️ No day folders in `{year}/{month}`.")
continue
for day in days:
try:
files = list_remote_files(year, month, day)
except Exception as exc:
notes.append(f"⚠️ Failed to list `{year}/{month}/{day}`: {exc}")
continue
if not files:
notes.append(f"⚠️ No CSV files in `{year}/{month}/{day}`.")
continue
for filename in files:
try:
download_repository_file(year, month, day, filename)
downloaded += 1
except Exception as exc:
notes.append(f"⚠️ {year}/{month}/{day}/{filename}: {exc}")
local = load_repository_training_files(current_label)
message_lines = []
if downloaded:
message_lines.append(
f"Downloaded {downloaded} CSV file(s) for `{year}` into the "
f"database cache `{TRAINING_DATA_DIR}`."
)
message_lines.extend(notes)
if not message_lines:
message_lines.append("No files were downloaded.")
return (*local, gr.update(value=[]), "\n".join(message_lines))
def clear_downloaded_cache(current_label: str):
status_message = ""
try:
if TRAINING_DATA_DIR.exists():
shutil.rmtree(TRAINING_DATA_DIR)
TRAINING_DATA_DIR.mkdir(parents=True, exist_ok=True)
status_message = (
f"Cleared all downloaded CSVs from database cache `{TRAINING_DATA_DIR}`."
)
except Exception as exc:
status_message = f"⚠️ Failed to clear database cache: {exc}"
local = load_repository_training_files(current_label, force_refresh=True)
remote = list(refresh_remote_browser(force_refresh=False))
if status_message:
previous = remote[-1]
if isinstance(previous, str) and previous:
remote[-1] = f"{status_message}\n{previous}"
else:
remote[-1] = status_message
return (*local, *remote)
def normalise_output_directory(directory: Optional[str]) -> Path:
base = Path(directory or MODEL_OUTPUT_DIR)
base = base.expanduser()
if not base.is_absolute():
base = (Path.cwd() / base).resolve()
return base
def resolve_output_path(
directory: Optional[Union[Path, str]], filename: Optional[str], fallback: str
) -> Path:
if isinstance(directory, Path):
base = directory
else:
base = normalise_output_directory(directory)
candidate = Path(filename or "").expanduser()
if str(candidate):
if candidate.is_absolute():
return candidate
return (base / candidate).resolve()
return (base / fallback).resolve()
ARTIFACT_FILE_EXTENSIONS: Tuple[str, ...] = (
".keras",
".h5",
".joblib",
".pkl",
".json",
".onnx",
".zip",
".txt",
)
def gather_directory_choices(current: Optional[str]) -> Tuple[List[str], str]:
base = normalise_output_directory(current or str(MODEL_OUTPUT_DIR))
candidates = {str(base)}
try:
for candidate in base.parent.iterdir():
if candidate.is_dir():
candidates.add(str(candidate.resolve()))
except Exception:
pass
return sorted(candidates), str(base)
def gather_artifact_choices(
directory: Optional[str], selection: Optional[str] = None
) -> Tuple[List[Tuple[str, str]], Optional[str]]:
base = normalise_output_directory(directory)
choices: List[Tuple[str, str]] = []
selected_value: Optional[str] = None
if base.exists():
try:
artifacts = sorted(
[
path
for path in base.iterdir()
if path.is_file()
and (
not ARTIFACT_FILE_EXTENSIONS
or path.suffix.lower() in ARTIFACT_FILE_EXTENSIONS
)
],
key=lambda path: path.name.lower(),
)
choices = [(artifact.name, str(artifact)) for artifact in artifacts]
except Exception:
choices = []
if selection and any(value == selection for _, value in choices):
selected_value = selection
elif choices:
selected_value = choices[0][1]
return choices, selected_value
def download_button_state(path: Optional[Union[str, Path]]):
if not path:
return gr.update(value=None, visible=False)
candidate = Path(path)
if candidate.exists():
return gr.update(value=str(candidate), visible=True)
return gr.update(value=None, visible=False)
def clear_training_files():
default_label = LABEL_COLUMN or "Fault"
for cached_file in TRAINING_UPLOAD_DIR.glob("*"):
try:
if cached_file.is_file():
cached_file.unlink(missing_ok=True)
except Exception:
pass
return (
[],
"No training files selected.",
gr.update(choices=[default_label], value=default_label),
gr.update(value=None),
)
PROJECT_OVERVIEW_MD = """
## Project Overview
This project focuses on classifying faults in electrical transmission lines and
grid-connected photovoltaic (PV) systems by combining ensemble learning
techniques with deep neural architectures.
## Datasets
### Transmission Line Fault Dataset
- 134,406 samples collected from Phasor Measurement Units (PMUs)
- 14 monitored channels covering currents, voltages, magnitudes, frequency, and phase angles
- Labels span symmetrical and asymmetrical faults: NF, L-G, LL, LL-G, LLL, and LLL-G
- Time span: 0 to 5.7 seconds with high-frequency sampling
### Grid-Connected PV System Fault Dataset
- 2,163,480 samples from 16 experimental scenarios
- 14 features including PV array measurements (Ipv, Vpv, Vdc), three-phase currents/voltages, aggregate magnitudes (Iabc, Vabc), and frequency indicators (If, Vf)
- Captures array, inverter, grid anomaly, feedback sensor, and MPPT controller faults at 9.9989 μs sampling intervals
## Data Format Quick Reference
Each measurement file may be comma or tab separated and typically exposes the
following ordered columns:
1. `Timestamp`
2. `[325] UPMU_SUB22:FREQ` – system frequency (Hz)
3. `[326] UPMU_SUB22:DFDT` – frequency rate-of-change
4. `[327] UPMU_SUB22:FLAG` – PMU status flag
5. `[328] UPMU_SUB22-L1:MAG` – phase A voltage magnitude
6. `[329] UPMU_SUB22-L1:ANG` – phase A voltage angle
7. `[330] UPMU_SUB22-L2:MAG` – phase B voltage magnitude
8. `[331] UPMU_SUB22-L2:ANG` – phase B voltage angle
9. `[332] UPMU_SUB22-L3:MAG` – phase C voltage magnitude
10. `[333] UPMU_SUB22-L3:ANG` – phase C voltage angle
11. `[334] UPMU_SUB22-C1:MAG` – phase A current magnitude
12. `[335] UPMU_SUB22-C1:ANG` – phase A current angle
13. `[336] UPMU_SUB22-C2:MAG` – phase B current magnitude
14. `[337] UPMU_SUB22-C2:ANG` – phase B current angle
15. `[338] UPMU_SUB22-C3:MAG` – phase C current magnitude
16. `[339] UPMU_SUB22-C3:ANG` – phase C current angle
The training tab automatically downloads the latest CSV exports from the
`VincentCroft/ThesisModelData` repository and concatenates them before building
sliding windows.
## Models Developed
1. **Support Vector Machine (SVM)** – provides the classical machine learning baseline with balanced accuracy across both datasets (85% PMU / 83% PV).
2. **CNN-LSTM** – couples convolutional feature extraction with temporal memory, achieving 92% PMU / 89% PV accuracy.
3. **Temporal Convolutional Network (TCN)** – leverages dilated convolutions for long-range context and delivers the best trade-off between accuracy and training time (94% PMU / 91% PV).
## Results Summary
- **Transmission Line Fault Classification**: SVM 85%, CNN-LSTM 92%, TCN 94%
- **PV System Fault Classification**: SVM 83%, CNN-LSTM 89%, TCN 91%
Use the **Inference** tab to score new PMU/PV windows and the **Training** tab to
fine-tune or retrain any of the supported models directly within Hugging Face
Spaces. The logs panel will surface TensorBoard archives whenever deep-learning
models are trained.
"""
def load_measurement_csv(path: str) -> pd.DataFrame:
"""Read a PMU/PV measurement file with flexible separators and column mapping."""
try:
df = pd.read_csv(path, sep=None, engine="python", encoding="utf-8-sig")
except Exception:
df = None
for separator in ("\t", ",", ";"):
try:
df = pd.read_csv(
path, sep=separator, engine="python", encoding="utf-8-sig"
)
break
except Exception:
df = None
if df is None:
raise
# Clean column names
df.columns = [str(col).strip() for col in df.columns]
print(f"Loaded CSV with {len(df)} rows and {len(df.columns)} columns")
print(f"Columns: {list(df.columns)}")
print(f"Data shape: {df.shape}")
# Check if we have enough data for training
if len(df) < 100:
print(
f"Warning: Only {len(df)} rows of data. Recommend at least 1000 rows for effective training."
)
# Check for label column
has_label = any(
col.lower() in ["fault", "label", "class", "target"] for col in df.columns
)
if not has_label:
print(
"Warning: No label column found. Adding dummy 'Fault' column with value 'Normal' for all samples."
)
df["Fault"] = "Normal" # Add dummy label for training
# Create column mapping - map similar column names to expected format
column_mapping = {}
expected_cols = list(REQUIRED_PMU_COLUMNS)
# If we have at least the right number of numeric columns after Timestamp, use positional mapping
if "Timestamp" in df.columns:
numeric_cols = [col for col in df.columns if col != "Timestamp"]
if len(numeric_cols) >= len(expected_cols):
# Map by position (after Timestamp)
for i, expected_col in enumerate(expected_cols):
if i < len(numeric_cols):
column_mapping[numeric_cols[i]] = expected_col
# Rename columns to match expected format
df = df.rename(columns=column_mapping)
# Check if we have the required columns after mapping
missing = [col for col in REQUIRED_PMU_COLUMNS if col not in df.columns]
if missing:
# If still missing, try a more flexible approach
available_numeric = df.select_dtypes(include=[np.number]).columns.tolist()
if len(available_numeric) >= len(expected_cols):
# Use the first N numeric columns
for i, expected_col in enumerate(expected_cols):
if i < len(available_numeric):
if available_numeric[i] not in df.columns:
continue
df = df.rename(columns={available_numeric[i]: expected_col})
# Recheck missing columns
missing = [col for col in REQUIRED_PMU_COLUMNS if col not in df.columns]
if missing:
missing_str = ", ".join(missing)
available_str = ", ".join(df.columns.tolist())
raise ValueError(
f"Missing required PMU feature columns: {missing_str}. "
f"Available columns: {available_str}. "
"Please ensure your CSV has the correct format with Timestamp followed by PMU measurements."
)
return df
def apply_metadata(metadata: Dict[str, Any]) -> None:
global FEATURE_COLUMNS, LABEL_CLASSES, LABEL_COLUMN, SEQUENCE_LENGTH, DEFAULT_WINDOW_STRIDE, MODEL_TYPE, MODEL_FORMAT
FEATURE_COLUMNS = [
str(col) for col in metadata.get("feature_columns", DEFAULT_FEATURE_COLUMNS)
]
LABEL_CLASSES = [str(label) for label in metadata.get("label_classes", [])]
LABEL_COLUMN = str(metadata.get("label_column", "Fault"))
SEQUENCE_LENGTH = int(metadata.get("sequence_length", DEFAULT_SEQUENCE_LENGTH))
DEFAULT_WINDOW_STRIDE = int(metadata.get("stride", DEFAULT_STRIDE))
MODEL_TYPE = str(metadata.get("model_type", "cnn_lstm")).lower()
MODEL_FORMAT = str(
metadata.get("model_format", "joblib" if MODEL_TYPE == "svm" else "keras")
).lower()
apply_metadata(METADATA)
def sync_label_classes_from_model(model: Optional[object]) -> None:
global LABEL_CLASSES
if model is None:
return
if hasattr(model, "classes_"):
LABEL_CLASSES = [str(label) for label in getattr(model, "classes_")]
elif not LABEL_CLASSES and hasattr(model, "output_shape"):
LABEL_CLASSES = [str(i) for i in range(int(model.output_shape[-1]))]
# Load model and scaler with error handling
print("Loading model and scaler...")
try:
MODEL = try_load_model(MODEL_PATH, MODEL_TYPE, MODEL_FORMAT)
print(f"Model loaded: {MODEL is not None}")
except Exception as e:
print(f"Model loading failed: {e}")
MODEL = None
try:
SCALER = try_load_scaler(SCALER_PATH)
print(f"Scaler loaded: {SCALER is not None}")
except Exception as e:
print(f"Scaler loading failed: {e}")
SCALER = None
try:
sync_label_classes_from_model(MODEL)
print("Label classes synchronized")
except Exception as e:
print(f"Label sync failed: {e}")
print("Application initialization completed.")
print(
f"Ready to start Gradio interface. Model available: {MODEL is not None}, Scaler available: {SCALER is not None}"
)
def refresh_artifacts(model_path: Path, scaler_path: Path, metadata_path: Path) -> None:
global MODEL_PATH, SCALER_PATH, METADATA_PATH, MODEL, SCALER, METADATA
MODEL_PATH = model_path
SCALER_PATH = scaler_path
METADATA_PATH = metadata_path
METADATA = load_metadata(metadata_path)
apply_metadata(METADATA)
MODEL = try_load_model(model_path, MODEL_TYPE, MODEL_FORMAT)
SCALER = try_load_scaler(scaler_path)
sync_label_classes_from_model(MODEL)
# --------------------------------------------------------------------------------------
# Pre-processing helpers
# --------------------------------------------------------------------------------------
def ensure_ready():
if MODEL is None or SCALER is None:
raise RuntimeError(
"The model and feature scaler are not available. Upload the trained model "
"(for example `pmu_cnn_lstm_model.keras`, `pmu_tcn_model.keras`, or `pmu_svm_model.joblib`), "
"the feature scaler (`pmu_feature_scaler.pkl`), and the metadata JSON (`pmu_metadata.json`) to the Space root "
"or configure the Hugging Face Hub environment variables so the artifacts can be downloaded "
"automatically."
)
def parse_text_features(text: str) -> np.ndarray:
cleaned = re.sub(r"[;\n\t]+", ",", text.strip())
arr = np.fromstring(cleaned, sep=",")
if arr.size == 0:
raise ValueError(
"No feature values were parsed. Please enter comma-separated numbers."
)
return arr.astype(np.float32)
def apply_scaler(sequences: np.ndarray) -> np.ndarray:
if SCALER is None:
return sequences
shape = sequences.shape
flattened = sequences.reshape(-1, shape[-1])
scaled = SCALER.transform(flattened)
return scaled.reshape(shape)
def make_sliding_windows(
data: np.ndarray, sequence_length: int, stride: int
) -> np.ndarray:
if data.shape[0] < sequence_length:
raise ValueError(
f"The dataset contains {data.shape[0]} rows which is less than the requested sequence "
f"length {sequence_length}. Provide more samples or reduce the sequence length."
)
windows = [
data[start : start + sequence_length]
for start in range(0, data.shape[0] - sequence_length + 1, stride)
]
return np.stack(windows)
def dataframe_to_sequences(
df: pd.DataFrame,
*,
sequence_length: int,
stride: int,
feature_columns: Sequence[str],
drop_label: bool = True,
) -> np.ndarray:
work_df = df.copy()
if drop_label and LABEL_COLUMN in work_df.columns:
work_df = work_df.drop(columns=[LABEL_COLUMN])
if "Timestamp" in work_df.columns:
work_df = work_df.sort_values("Timestamp")
available_cols = [c for c in feature_columns if c in work_df.columns]
n_features = len(feature_columns)
if available_cols and len(available_cols) == n_features:
array = work_df[available_cols].astype(np.float32).to_numpy()
return make_sliding_windows(array, sequence_length, stride)
numeric_df = work_df.select_dtypes(include=[np.number])
array = numeric_df.astype(np.float32).to_numpy()
if array.shape[1] == n_features * sequence_length:
return array.reshape(array.shape[0], sequence_length, n_features)
if sequence_length == 1 and array.shape[1] == n_features:
return array.reshape(array.shape[0], 1, n_features)
raise ValueError(
"CSV columns do not match the expected feature layout. Include the full PMU feature set "
"or provide pre-shaped sliding window data."
)
def label_name(index: int) -> str:
if 0 <= index < len(LABEL_CLASSES):
return str(LABEL_CLASSES[index])
return f"class_{index}"
def format_predictions(probabilities: np.ndarray) -> pd.DataFrame:
rows: List[Dict[str, object]] = []
order = np.argsort(probabilities, axis=1)[:, ::-1]
for idx, (prob_row, ranking) in enumerate(zip(probabilities, order)):
top_idx = int(ranking[0])
top_label = label_name(top_idx)
top_conf = float(prob_row[top_idx])
top3 = [f"{label_name(i)} ({prob_row[i]*100:.2f}%)" for i in ranking[:3]]
rows.append(
{
"window": idx,
"predicted_label": top_label,
"confidence": round(top_conf, 4),
"top3": " | ".join(top3),
}
)
return pd.DataFrame(rows)
def probabilities_to_json(probabilities: np.ndarray) -> List[Dict[str, object]]:
payload: List[Dict[str, object]] = []
for idx, prob_row in enumerate(probabilities):
payload.append(
{
"window": int(idx),
"probabilities": {
label_name(i): float(prob_row[i]) for i in range(prob_row.shape[0])
},
}
)
return payload
def predict_sequences(
sequences: np.ndarray,
) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
ensure_ready()
sequences = apply_scaler(sequences.astype(np.float32))
if MODEL_TYPE == "svm":
flattened = sequences.reshape(sequences.shape[0], -1)
if hasattr(MODEL, "predict_proba"):
probs = MODEL.predict_proba(flattened)
else:
raise RuntimeError(
"Loaded SVM model does not expose predict_proba. Retrain with probability=True."
)
else:
probs = MODEL.predict(sequences, verbose=0)
table = format_predictions(probs)
json_probs = probabilities_to_json(probs)
architecture = MODEL_TYPE.replace("_", "-").upper()
status = f"Generated {len(sequences)} windows. {architecture} model output dimension: {probs.shape[1]}."
return status, table, json_probs
def predict_from_text(
text: str, sequence_length: int
) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
arr = parse_text_features(text)
n_features = len(FEATURE_COLUMNS)
if arr.size % n_features != 0:
raise ValueError(
f"The number of values ({arr.size}) is not a multiple of the feature dimension "
f"({n_features}). Provide values in groups of {n_features}."
)
timesteps = arr.size // n_features
if timesteps != sequence_length:
raise ValueError(
f"Detected {timesteps} timesteps which does not match the configured sequence length "
f"({sequence_length})."
)
sequences = arr.reshape(1, sequence_length, n_features)
status, table, probs = predict_sequences(sequences)
status = f"Single window prediction complete. {status}"
return status, table, probs
def predict_from_csv(
file_obj, sequence_length: int, stride: int
) -> Tuple[str, pd.DataFrame, List[Dict[str, object]]]:
df = load_measurement_csv(file_obj.name)
sequences = dataframe_to_sequences(
df,
sequence_length=sequence_length,
stride=stride,
feature_columns=FEATURE_COLUMNS,
)
status, table, probs = predict_sequences(sequences)
status = f"CSV processed successfully. Generated {len(sequences)} windows. {status}"
return status, table, probs
# --------------------------------------------------------------------------------------
# Training helpers
# --------------------------------------------------------------------------------------
def classification_report_to_dataframe(report: Dict[str, Any]) -> pd.DataFrame:
rows: List[Dict[str, Any]] = []
for label, metrics in report.items():
if isinstance(metrics, dict):
row = {"label": label}
for key, value in metrics.items():
if key == "support":
row[key] = int(value)
else:
row[key] = round(float(value), 4)
rows.append(row)
else:
rows.append({"label": label, "accuracy": round(float(metrics), 4)})
return pd.DataFrame(rows)
def confusion_matrix_to_dataframe(
confusion: Sequence[Sequence[float]], labels: Sequence[str]
) -> pd.DataFrame:
if not confusion:
return pd.DataFrame()
df = pd.DataFrame(confusion, index=list(labels), columns=list(labels))
df.index.name = "True Label"
df.columns.name = "Predicted Label"
return df
# --------------------------------------------------------------------------------------
# Gradio interface
# --------------------------------------------------------------------------------------
def build_interface() -> gr.Blocks:
theme = gr.themes.Soft(
primary_hue="sky", secondary_hue="blue", neutral_hue="gray"
).set(
body_background_fill="#1f1f1f",
body_text_color="#f5f5f5",
block_background_fill="#262626",
block_border_color="#333333",
button_primary_background_fill="#5ac8fa",
button_primary_background_fill_hover="#48b5eb",
button_primary_border_color="#38bdf8",
button_primary_text_color="#0f172a",
button_secondary_background_fill="#3f3f46",
button_secondary_text_color="#f5f5f5",
)
def _normalise_directory_string(value: Optional[Union[str, Path]]) -> str:
if value is None:
return ""
path = Path(value).expanduser()
try:
return str(path.resolve())
except Exception:
return str(path)
with gr.Blocks(
title="Fault Classification - PMU Data", theme=theme, css=APP_CSS
) as demo:
gr.Markdown("# Fault Classification for PMU & PV Data")
gr.Markdown(
"🖥️ TensorFlow is locked to CPU execution so the Space can run without CUDA drivers."
)
if MODEL is None or SCALER is None:
gr.Markdown(
"⚠️ **Artifacts Missing** — Upload `pmu_cnn_lstm_model.keras`, "
"`pmu_feature_scaler.pkl`, and `pmu_metadata.json` to enable inference, "
"or configure the Hugging Face Hub environment variables so they can be downloaded."
)
else:
class_count = len(LABEL_CLASSES) if LABEL_CLASSES else "unknown"
gr.Markdown(
f"Loaded a **{MODEL_TYPE.upper()}** model ({MODEL_FORMAT.upper()}) with "
f"{len(FEATURE_COLUMNS)} features, sequence length **{SEQUENCE_LENGTH}**, and "
f"{class_count} target classes. Use the tabs below to run inference or fine-tune "
"the model with your own CSV files."
)
with gr.Accordion("Feature Reference", open=False):
gr.Markdown(
f"Each time window expects **{len(FEATURE_COLUMNS)} features** ordered as follows:\n"
+ "\n".join(f"- {name}" for name in FEATURE_COLUMNS)
)
gr.Markdown(
f"Default training parameters: **sequence length = {SEQUENCE_LENGTH}**, "
f"**stride = {DEFAULT_WINDOW_STRIDE}**. Adjust them in the tabs as needed."
)
with gr.Tabs():
with gr.Tab("Overview"):
gr.Markdown(PROJECT_OVERVIEW_MD)
with gr.Tab("Inference"):
gr.Markdown("## Run Inference")
with gr.Row():
file_in = gr.File(label="Upload PMU CSV", file_types=[".csv"])
text_in = gr.Textbox(
lines=4,
label="Or paste a single window (comma separated)",
placeholder="49.97772,1.215825E-38,...",
)
with gr.Row():
sequence_length_input = gr.Slider(
minimum=1,
maximum=max(1, SEQUENCE_LENGTH * 2),
step=1,
value=SEQUENCE_LENGTH,
label="Sequence length (timesteps)",
)
stride_input = gr.Slider(
minimum=1,
maximum=max(1, SEQUENCE_LENGTH),
step=1,
value=max(1, DEFAULT_WINDOW_STRIDE),
label="CSV window stride",
)
predict_btn = gr.Button("🚀 Run Inference", variant="primary")
status_out = gr.Textbox(label="Status", interactive=False)
table_out = gr.Dataframe(
headers=["window", "predicted_label", "confidence", "top3"],
label="Predictions",
interactive=False,
)
probs_out = gr.JSON(label="Per-window probabilities")
def _run_prediction(file_obj, text, sequence_length, stride):
sequence_length = int(sequence_length)
stride = int(stride)
try:
if file_obj is not None:
return predict_from_csv(file_obj, sequence_length, stride)
if text and text.strip():
return predict_from_text(text, sequence_length)
return (
"Please upload a CSV file or provide feature values.",
pd.DataFrame(),
[],
)
except Exception as exc:
return f"Prediction failed: {exc}", pd.DataFrame(), []
predict_btn.click(
_run_prediction,
inputs=[file_in, text_in, sequence_length_input, stride_input],
outputs=[status_out, table_out, probs_out],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
with gr.Tab("Training"):
gr.Markdown("## Train or Fine-tune the Model")
gr.Markdown(
"Training data is automatically downloaded from the database. "
"Refresh the cache if new files are added upstream."
)
training_files_state = gr.State([])
with gr.Row():
with gr.Column(scale=3):
training_files_summary = gr.Textbox(
label="Database training CSVs",
value="Training dataset not loaded yet.",
lines=4,
interactive=False,
elem_id="training-files-summary",
)
with gr.Column(scale=2, min_width=240):
dataset_info = gr.Markdown(
"No local database CSVs downloaded yet.",
)
dataset_refresh = gr.Button(
"🔄 Reload dataset from database",
variant="secondary",
)
clear_cache_button = gr.Button(
"🧹 Clear downloaded cache",
variant="secondary",
)
with gr.Accordion("📂 DataBaseBrowser", open=False):
gr.Markdown(
"Browse the upstream database by date and download only the CSVs you need."
)
with gr.Row(elem_id="date-browser-row"):
with gr.Column(scale=1, elem_classes=["date-browser-column"]):
year_selector = gr.Dropdown(label="Year", choices=[])
year_download_button = gr.Button(
"⬇️ Download year CSVs", variant="secondary"
)
with gr.Column(scale=1, elem_classes=["date-browser-column"]):
month_selector = gr.Dropdown(label="Month", choices=[])
month_download_button = gr.Button(
"⬇️ Download month CSVs", variant="secondary"
)
with gr.Column(scale=1, elem_classes=["date-browser-column"]):
day_selector = gr.Dropdown(label="Day", choices=[])
day_download_button = gr.Button(
"⬇️ Download day CSVs", variant="secondary"
)
with gr.Column(elem_id="available-files-section"):
available_files = gr.CheckboxGroup(
label="Available CSV files",
choices=[],
value=[],
elem_id="available-files-grid",
)
download_button = gr.Button(
"⬇️ Download selected CSVs",
variant="secondary",
elem_id="download-selected-button",
)
repo_status = gr.Markdown(
"Click 'Reload dataset from database' to fetch the directory tree."
)
with gr.Row():
label_input = gr.Dropdown(
value=LABEL_COLUMN,
choices=[LABEL_COLUMN],
allow_custom_value=True,
label="Label column name",
)
model_selector = gr.Radio(
choices=["CNN-LSTM", "TCN", "SVM"],
value=(
"TCN"
if MODEL_TYPE == "tcn"
else ("SVM" if MODEL_TYPE == "svm" else "CNN-LSTM")
),
label="Model architecture",
)
sequence_length_train = gr.Slider(
minimum=4,
maximum=max(32, SEQUENCE_LENGTH * 2),
step=1,
value=SEQUENCE_LENGTH,
label="Sequence length",
)
stride_train = gr.Slider(
minimum=1,
maximum=max(32, SEQUENCE_LENGTH * 2),
step=1,
value=max(1, DEFAULT_WINDOW_STRIDE),
label="Stride",
)
model_default = MODEL_FILENAME_BY_TYPE.get(
MODEL_TYPE, Path(LOCAL_MODEL_FILE).name
)
with gr.Row():
validation_train = gr.Slider(
minimum=0.05,
maximum=0.4,
step=0.05,
value=0.2,
label="Validation split",
)
batch_train = gr.Slider(
minimum=32,
maximum=512,
step=32,
value=128,
label="Batch size",
)
epochs_train = gr.Slider(
minimum=5,
maximum=100,
step=5,
value=50,
label="Epochs",
)
directory_choices, directory_default = gather_directory_choices(
str(MODEL_OUTPUT_DIR)
)
artifact_choices, default_artifact = gather_artifact_choices(
directory_default
)
with gr.Row():
output_directory = gr.Dropdown(
value=directory_default,
label="Output directory",
choices=directory_choices,
allow_custom_value=True,
)
model_name = gr.Textbox(
value=model_default,
label="Model output filename",
)
scaler_name = gr.Textbox(
value=Path(LOCAL_SCALER_FILE).name,
label="Scaler output filename",
)
metadata_name = gr.Textbox(
value=Path(LOCAL_METADATA_FILE).name,
label="Metadata output filename",
)
with gr.Row():
artifact_browser = gr.Dropdown(
label="Saved artifacts in directory",
choices=artifact_choices,
value=default_artifact,
)
artifact_download_button = gr.DownloadButton(
"⬇️ Download selected artifact",
value=default_artifact,
visible=bool(default_artifact),
variant="secondary",
)
def on_output_directory_change(selected_dir, current_selection):
choices, normalised = gather_directory_choices(selected_dir)
artifact_options, selected = gather_artifact_choices(
normalised, current_selection
)
return (
gr.update(choices=choices, value=normalised),
gr.update(choices=artifact_options, value=selected),
download_button_state(selected),
)
def on_artifact_change(selected_path):
return download_button_state(selected_path)
output_directory.change(
on_output_directory_change,
inputs=[output_directory, artifact_browser],
outputs=[
output_directory,
artifact_browser,
artifact_download_button,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
artifact_browser.change(
on_artifact_change,
inputs=[artifact_browser],
outputs=[artifact_download_button],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
with gr.Row(elem_id="artifact-download-row"):
model_download_button = gr.DownloadButton(
"⬇️ Download model file",
value=None,
visible=False,
elem_classes=["artifact-download-button"],
)
scaler_download_button = gr.DownloadButton(
"⬇️ Download scaler file",
value=None,
visible=False,
elem_classes=["artifact-download-button"],
)
metadata_download_button = gr.DownloadButton(
"⬇️ Download metadata file",
value=None,
visible=False,
elem_classes=["artifact-download-button"],
)
tensorboard_download_button = gr.DownloadButton(
"⬇️ Download TensorBoard logs",
value=None,
visible=False,
elem_classes=["artifact-download-button"],
)
model_download_button.file_name = Path(LOCAL_MODEL_FILE).name
scaler_download_button.file_name = Path(LOCAL_SCALER_FILE).name
metadata_download_button.file_name = Path(LOCAL_METADATA_FILE).name
tensorboard_download_button.file_name = "tensorboard_logs.zip"
tensorboard_toggle = gr.Checkbox(
value=True,
label="Enable TensorBoard logging (creates downloadable archive)",
)
def _suggest_model_filename(choice: str, current_value: str):
choice_key = (choice or "cnn_lstm").lower().replace("-", "_")
suggested = MODEL_FILENAME_BY_TYPE.get(
choice_key, Path(LOCAL_MODEL_FILE).name
)
known_defaults = set(MODEL_FILENAME_BY_TYPE.values())
current_name = Path(current_value).name if current_value else ""
if current_name and current_name not in known_defaults:
return gr.update()
return gr.update(value=suggested)
model_selector.change(
_suggest_model_filename,
inputs=[model_selector, model_name],
outputs=model_name,
)
with gr.Row():
train_button = gr.Button("🛠️ Start Training", variant="primary")
progress_button = gr.Button(
"📊 Check Progress", variant="secondary"
)
# Training status display
training_status = gr.Textbox(label="Training Status", interactive=False)
report_output = gr.Dataframe(
label="Classification report", interactive=False
)
history_output = gr.JSON(label="Training history")
confusion_output = gr.Dataframe(
label="Confusion matrix", interactive=False
)
# Message area at the bottom for progress updates
with gr.Accordion("📋 Progress Messages", open=True):
progress_messages = gr.Textbox(
label="Training Messages",
lines=8,
max_lines=20,
interactive=False,
autoscroll=True,
placeholder="Click 'Check Progress' to see training updates...",
)
with gr.Row():
gr.Button("🗑️ Clear Messages", variant="secondary").click(
lambda: "", outputs=[progress_messages]
)
def _run_training(
file_paths,
label_column,
model_choice,
sequence_length,
stride,
validation_split,
batch_size,
epochs,
output_dir,
model_filename,
scaler_filename,
metadata_filename,
enable_tensorboard,
):
base_dir = normalise_output_directory(output_dir)
try:
base_dir.mkdir(parents=True, exist_ok=True)
model_path = resolve_output_path(
base_dir,
model_filename,
Path(LOCAL_MODEL_FILE).name,
)
scaler_path = resolve_output_path(
base_dir,
scaler_filename,
Path(LOCAL_SCALER_FILE).name,
)
metadata_path = resolve_output_path(
base_dir,
metadata_filename,
Path(LOCAL_METADATA_FILE).name,
)
model_path.parent.mkdir(parents=True, exist_ok=True)
scaler_path.parent.mkdir(parents=True, exist_ok=True)
metadata_path.parent.mkdir(parents=True, exist_ok=True)
# Create status file path for progress tracking
status_file = model_path.parent / "training_status.txt"
# Initialize status
with open(status_file, "w") as f:
f.write("Starting training setup...")
if not file_paths:
raise ValueError(
"No training CSVs were found in the database cache. "
"Use 'Reload dataset from database' and try again."
)
with open(status_file, "w") as f:
f.write("Loading and validating CSV files...")
available_paths = [
path for path in file_paths if Path(path).exists()
]
missing_paths = [
Path(path).name
for path in file_paths
if not Path(path).exists()
]
if not available_paths:
raise ValueError(
"Database training dataset is unavailable. Reload the dataset and retry."
)
dfs = [load_measurement_csv(path) for path in available_paths]
combined = pd.concat(dfs, ignore_index=True)
# Validate data size and provide recommendations
total_samples = len(combined)
if total_samples < 100:
print(
f"Warning: Only {total_samples} samples. Recommend at least 1000 for good results."
)
print(
"Automatically switching to SVM for small dataset compatibility."
)
if model_choice in ["cnn_lstm", "tcn"]:
model_choice = "svm"
print(
f"Model type changed to SVM for better small dataset performance."
)
if total_samples < 10:
raise ValueError(
f"Insufficient data: {total_samples} samples. Need at least 10 samples for training."
)
label_column = (label_column or LABEL_COLUMN).strip()
if not label_column:
raise ValueError("Label column name cannot be empty.")
model_choice = (
(model_choice or "CNN-LSTM").lower().replace("-", "_")
)
if model_choice not in {"cnn_lstm", "tcn", "svm"}:
raise ValueError(
"Select CNN-LSTM, TCN, or SVM for the model architecture."
)
with open(status_file, "w") as f:
f.write(
f"Starting {model_choice.upper()} training with {len(combined)} samples..."
)
# Start training
result = train_from_dataframe(
combined,
label_column=label_column,
feature_columns=None,
sequence_length=int(sequence_length),
stride=int(stride),
validation_split=float(validation_split),
batch_size=int(batch_size),
epochs=int(epochs),
model_type=model_choice,
model_path=model_path,
scaler_path=scaler_path,
metadata_path=metadata_path,
enable_tensorboard=bool(enable_tensorboard),
)
refresh_artifacts(
Path(result["model_path"]),
Path(result["scaler_path"]),
Path(result["metadata_path"]),
)
report_df = classification_report_to_dataframe(
result["classification_report"]
)
confusion_df = confusion_matrix_to_dataframe(
result["confusion_matrix"], result["class_names"]
)
tensorboard_dir = result.get("tensorboard_log_dir")
tensorboard_zip = result.get("tensorboard_zip_path")
architecture = result["model_type"].replace("_", "-").upper()
status = (
f"Training complete using a {architecture} architecture. "
f"{result['num_sequences']} windows derived from "
f"{result['num_samples']} rows across {len(available_paths)} file(s)."
f" Artifacts saved to:"
f"\n• Model: {result['model_path']}\n"
f"• Scaler: {result['scaler_path']}\n"
f"• Metadata: {result['metadata_path']}"
)
status += f"\nLabel column used: {result.get('label_column', label_column)}"
if tensorboard_dir:
status += (
f"\nTensorBoard logs directory: {tensorboard_dir}"
f'\nRun `tensorboard --logdir "{tensorboard_dir}"` to inspect the training curves.'
"\nDownload the archive below to explore the run offline."
)
if missing_paths:
skipped = ", ".join(missing_paths)
status = f"⚠️ Skipped missing files: {skipped}\n" + status
artifact_choices, selected_artifact = gather_artifact_choices(
str(base_dir), result["model_path"]
)
return (
status,
report_df,
result["history"],
confusion_df,
download_button_state(result["model_path"]),
download_button_state(result["scaler_path"]),
download_button_state(result["metadata_path"]),
download_button_state(tensorboard_zip),
gr.update(value=result.get("label_column", label_column)),
gr.update(
choices=artifact_choices, value=selected_artifact
),
download_button_state(selected_artifact),
)
except Exception as exc:
artifact_choices, selected_artifact = gather_artifact_choices(
str(base_dir)
)
return (
f"Training failed: {exc}",
pd.DataFrame(),
{},
pd.DataFrame(),
download_button_state(None),
download_button_state(None),
download_button_state(None),
download_button_state(None),
gr.update(),
gr.update(
choices=artifact_choices, value=selected_artifact
),
download_button_state(selected_artifact),
)
def _check_progress(output_dir, model_filename, current_messages):
"""Check training progress by reading status file and accumulate messages."""
model_path = resolve_output_path(
output_dir, model_filename, Path(LOCAL_MODEL_FILE).name
)
status_file = model_path.parent / "training_status.txt"
status_message = read_training_status(str(status_file))
# Add timestamp to the message
from datetime import datetime
timestamp = datetime.now().strftime("%H:%M:%S")
new_message = f"[{timestamp}] {status_message}"
# Accumulate messages, keeping last 50 lines to prevent overflow
if current_messages:
lines = current_messages.split("\n")
lines.append(new_message)
# Keep only last 50 lines
if len(lines) > 50:
lines = lines[-50:]
accumulated_messages = "\n".join(lines)
else:
accumulated_messages = new_message
return accumulated_messages
train_button.click(
_run_training,
inputs=[
training_files_state,
label_input,
model_selector,
sequence_length_train,
stride_train,
validation_train,
batch_train,
epochs_train,
output_directory,
model_name,
scaler_name,
metadata_name,
tensorboard_toggle,
],
outputs=[
training_status,
report_output,
history_output,
confusion_output,
model_download_button,
scaler_download_button,
metadata_download_button,
tensorboard_download_button,
label_input,
artifact_browser,
artifact_download_button,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
progress_button.click(
_check_progress,
inputs=[output_directory, model_name, progress_messages],
outputs=[progress_messages],
)
year_selector.change(
on_year_change,
inputs=[year_selector],
outputs=[
month_selector,
day_selector,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
month_selector.change(
on_month_change,
inputs=[year_selector, month_selector],
outputs=[day_selector, available_files, repo_status],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
day_selector.change(
on_day_change,
inputs=[year_selector, month_selector, day_selector],
outputs=[available_files, repo_status],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
download_button.click(
download_selected_files,
inputs=[
year_selector,
month_selector,
day_selector,
available_files,
label_input,
],
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
year_download_button.click(
download_year_bundle,
inputs=[year_selector, label_input],
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
month_download_button.click(
download_month_bundle,
inputs=[year_selector, month_selector, label_input],
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
day_download_button.click(
download_day_bundle,
inputs=[year_selector, month_selector, day_selector, label_input],
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
def _reload_dataset(current_label):
local = load_repository_training_files(
current_label, force_refresh=True
)
remote = refresh_remote_browser(force_refresh=True)
return (*local, *remote)
dataset_refresh.click(
_reload_dataset,
inputs=[label_input],
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
year_selector,
month_selector,
day_selector,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
clear_cache_button.click(
clear_downloaded_cache,
inputs=[label_input],
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
year_selector,
month_selector,
day_selector,
available_files,
repo_status,
],
concurrency_limit=EVENT_CONCURRENCY_LIMIT,
)
def _initialise_dataset():
local = load_repository_training_files(
LABEL_COLUMN, force_refresh=False
)
remote = refresh_remote_browser(force_refresh=False)
return (*local, *remote)
demo.load(
_initialise_dataset,
inputs=None,
outputs=[
training_files_state,
training_files_summary,
label_input,
dataset_info,
year_selector,
month_selector,
day_selector,
available_files,
repo_status,
],
queue=False,
)
return demo
# --------------------------------------------------------------------------------------
# Launch helpers
# --------------------------------------------------------------------------------------
def resolve_server_port() -> int:
for env_var in ("PORT", "GRADIO_SERVER_PORT"):
value = os.environ.get(env_var)
if value:
try:
return int(value)
except ValueError:
print(f"Ignoring invalid port value from {env_var}: {value}")
return 7860
def main():
print("Building Gradio interface...")
try:
demo = build_interface()
print("Interface built successfully")
except Exception as e:
print(f"Failed to build interface: {e}")
import traceback
traceback.print_exc()
return
print("Setting up queue...")
try:
demo.queue(max_size=QUEUE_MAX_SIZE)
print("Queue configured")
except Exception as e:
print(f"Failed to configure queue: {e}")
try:
port = resolve_server_port()
print(f"Launching Gradio app on port {port}")
demo.launch(server_name="0.0.0.0", server_port=port, show_error=True)
except OSError as exc:
print("Failed to launch on requested port:", exc)
try:
demo.launch(server_name="0.0.0.0", show_error=True)
except Exception as e:
print(f"Failed to launch completely: {e}")
except Exception as e:
print(f"Unexpected launch error: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
print("=" * 50)
print("PMU Fault Classification App Starting")
print(f"Python version: {os.sys.version}")
print(f"Working directory: {os.getcwd()}")
print(f"HUB_REPO: {HUB_REPO}")
print(f"Model available: {MODEL is not None}")
print(f"Scaler available: {SCALER is not None}")
print("=" * 50)
main()
|