File size: 1,117 Bytes
0f576d2
 
 
 
 
 
 
 
383d983
0f576d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5d2d1
 
0f576d2
 
 
 
 
 
 
9fc924d
0f576d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#!/usr/bin/env python
# coding: utf-8

# In[82]:


import numpy as np
import tensorflow as tf

import sklearn
import random
import matplotlib.pyplot as plt
import requests


# In[83]:



# In[94]:



inception_net = tf.keras.applications.EfficientNetB7()


# In[100]:


import requests

response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def classify_image(inp):
  inp = inp.reshape((-1, 600, 600, 3))
  inp = tf.keras.applications.efficientnet_v2.preprocess_input(inp)
  prediction = inception_net.predict(inp).flatten()
  confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
  return confidences


# In[107]:


import gradio as gr
title = "Simple Image Classifier"
Description = "A image classifier demo , using pretrained Efficient Net B7 and fine tuned on Animal Images dataset found on Kaggle ,tools used Tensorflow , PIL,numpy , sklearn"

gr.Interface(fn=classify_image,
             title = title,
             description = Description,

             inputs=gr.Image(shape=(600, 600)),
             outputs=gr.Label(num_top_classes=3),
            ).launch()