File size: 11,295 Bytes
3b7d44a 20b4d4f 3b7d44a 120c53a 3b7d44a 20b4d4f 3b7d44a 20b4d4f 3b7d44a 20b4d4f 3b7d44a 120c53a 3b7d44a 20b4d4f 3b7d44a 20b4d4f 9db6d22 3b7d44a 20b4d4f 3b7d44a 20b4d4f 3b7d44a b020a59 3b7d44a b020a59 3b7d44a 20b4d4f 3b7d44a 20b4d4f 9db6d22 20b4d4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import json
import pandas as pd
from statistics import mean
from huggingface_hub import HfApi, create_repo
from datasets import load_dataset, Dataset
from datasets.data_files import EmptyDatasetError
import re
from constants import (
REPO_ID,
HF_TOKEN,
DATASETS,
SHORT_DATASET_NAMES,
DATASET_DESCRIPTIONS,
)
api = HfApi(token=HF_TOKEN)
OPEN_LICENSE_KEYWORDS = {
"mit", "apache", "apache-2", "apache-2.0",
"bsd", "bsd-2", "bsd-3", "bsd-2-clause", "bsd-3-clause",
"isc", "mpl", "mpl-2.0",
"lgpl", "lgpl-2.1", "lgpl-3.0",
"gpl", "gpl-2.0", "gpl-3.0", "agpl", "agpl-3.0",
"epl", "epl-2.0", "cddl", "cddl-1.0", "cddl-1.1",
"bsl", "bsl-1.0", "boost", "zlib", "unlicense", "artistic-2.0",
"cc0", "cc0-1.0",
"cc-by", "cc-by-3.0", "cc-by-4.0",
"cc-by-sa", "cc-by-sa-3.0", "cc-by-sa-4.0",
"openrail", "openrail-m", "bigscience openrail", "bigscience openrail-m",
"open-source", "opensource", "open source"
}
RESTRICTIVE_LICENSE_KEYWORDS = {
"cc-by-nc", "cc-by-nc-sa", "cc-nc", "nc-sa", "nc-nd",
"cc-by-nd", "cc-nd", "no-derivatives", "no derivatives",
"non-commercial", "noncommercial", "research-only", "research only",
"llama", "llama-2", "community license",
"proprietary", "closed", "unknown", "custom"
}
def is_open_license(license_str: str) -> bool:
s = (str(license_str) if license_str is not None else "").strip().lower()
if not s:
return False
if any(pat in s for pat in RESTRICTIVE_LICENSE_KEYWORDS):
return False
return any(pat in s for pat in OPEN_LICENSE_KEYWORDS)
def init_repo():
try:
api.repo_info(REPO_ID, repo_type="dataset")
except:
create_repo(REPO_ID, repo_type="dataset", private=True, token=HF_TOKEN)
def load_data():
columns = (
["model_name", "link", "license", "overall_wer", "overall_cer"]
+ [f"wer_{ds}" for ds in DATASETS]
+ [f"cer_{ds}" for ds in DATASETS]
)
try:
dataset = load_dataset(REPO_ID, token=HF_TOKEN)
df = dataset["train"].to_pandas()
except EmptyDatasetError:
df = pd.DataFrame(columns=columns)
if not df.empty:
df = df.sort_values("overall_wer").reset_index(drop=True)
df.insert(0, "rank", df.index + 1)
for col in (
["overall_wer", "overall_cer"]
+ [f"wer_{ds}" for ds in DATASETS]
+ [f"cer_{ds}" for ds in DATASETS]
):
df[col] = (df[col] * 100).round(2)
best_values = {ds: df[f"wer_{ds}"].min() for ds in DATASETS}
for short_ds, ds in zip(SHORT_DATASET_NAMES, DATASETS):
df[short_ds] = df.apply(
lambda row: f'<span title="CER: {row[f"cer_{ds}"]:.2f}%" '
f'class="metric-cell{" best-metric" if row[f"wer_{ds}"] == best_values[ds] else ""}">'
f"{row[f'wer_{ds}']:.2f}%</span>",
axis=1,
)
df = df.drop(columns=[f"wer_{ds}", f"cer_{ds}"])
df["model_name"] = df.apply(
lambda row: f'<a href="{row["link"]}" target="_blank">{row["model_name"]}</a>',
axis=1,
)
df = df.drop(columns=["link"])
df["license"] = df["license"].apply(lambda x: "Открытая" if is_open_license(x) else "Закрытая")
df["rank"] = df["rank"].apply(
lambda r: "🥇" if r == 1 else "🥈" if r == 2 else "🥉" if r == 3 else str(r)
)
df.rename(
columns={
"overall_wer": "Средний WER ⬇️",
"overall_cer": "Средний CER ⬇️",
"license": "Тип модели",
"model_name": "Модель",
"rank": "Ранг",
},
inplace=True,
)
table_html = df.to_html(
escape=False, index=False, classes="display cell-border compact stripe"
)
return f'<div class="leaderboard-wrapper"><div class="leaderboard-table">{table_html}</div></div>'
else:
return (
'<div class="leaderboard-wrapper"><div class="leaderboard-table"><table><thead><tr><th>Ранг</th><th>Модель</th><th>Тип модели</th><th>Средний WER ⬇️</th><th>Средний CER ⬇️</th>'
+ "".join(f"<th>{short}</th>" for short in SHORT_DATASET_NAMES)
+ "</tr></thead><tbody></tbody></table></div></div>"
)
def process_submit(json_str):
columns = (
["model_name", "link", "license", "overall_wer", "overall_cer"]
+ [f"wer_{ds}" for ds in DATASETS]
+ [f"cer_{ds}" for ds in DATASETS]
)
try:
data = json.loads(json_str)
required_keys = ["model_name", "link", "license", "metrics"]
if not all(key in data for key in required_keys):
raise ValueError(
"Неверная структура JSON. Требуемые поля: model_name, link, license, metrics"
)
metrics = data["metrics"]
if set(metrics.keys()) != set(DATASETS):
raise ValueError(
f"Метрики должны быть для всех датасетов: {', '.join(DATASETS)}"
)
wers, cers = [], []
row = {
"model_name": data["model_name"],
"link": data["link"],
"license": data["license"],
}
for ds in DATASETS:
if "wer" not in metrics[ds] or "cer" not in metrics[ds]:
raise ValueError(f"Для {ds} требуются wer и cer")
row[f"wer_{ds}"] = metrics[ds]["wer"]
row[f"cer_{ds}"] = metrics[ds]["cer"]
wers.append(metrics[ds]["wer"])
cers.append(metrics[ds]["cer"])
row["overall_wer"] = mean(wers)
row["overall_cer"] = mean(cers)
try:
dataset = load_dataset(REPO_ID, token=HF_TOKEN)
df = dataset["train"].to_pandas()
except EmptyDatasetError:
df = pd.DataFrame(columns=columns)
new_df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
new_dataset = Dataset.from_pandas(new_df)
new_dataset.push_to_hub(REPO_ID, token=HF_TOKEN)
updated_html = load_data()
return updated_html, "Успешно добавлено!", ""
except Exception as e:
return None, f"Ошибка: {str(e)}", json_str
def get_datasets_description():
html = '<div class="datasets-container">'
for short_ds, info in DATASET_DESCRIPTIONS.items():
html += f"""
<div class="dataset-card">
<h3>{short_ds} <span class="full-name">{info["full_name"]}</span></h3>
<p>{info["description"]}</p>
<p class="records">📊 {info["num_rows"]} записей</p>
</div>
"""
html += "</div>"
return html
def _strip_punct(text: str) -> str:
return re.sub(r"[^\w\s]+", "", text, flags=re.UNICODE)
def normalize_text(s: str) -> str:
return _strip_punct(s.lower()).strip()
def _edit_distance(a, b):
n, m = len(a), len(b)
dp = [[0] * (m + 1) for _ in range(n + 1)]
for i in range(n + 1):
dp[i][0] = i
for j in range(m + 1):
dp[0][j] = j
for i in range(1, n + 1):
ai = a[i - 1]
for j in range(1, m + 1):
cost = 0 if ai == b[j - 1] else 1
dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1, dp[i - 1][j - 1] + cost)
return dp[n][m]
def compute_wer_cer(ref: str, hyp: str, normalize: bool = True):
if normalize:
ref_norm, hyp_norm = normalize_text(ref), normalize_text(hyp)
else:
ref_norm, hyp_norm = ref, hyp
ref_words, hyp_words = ref_norm.split(), hyp_norm.split()
Nw = max(1, len(ref_words))
wer = _edit_distance(ref_words, hyp_words) / Nw
ref_chars, hyp_chars = list(ref_norm), list(hyp_norm)
Nc = max(1, len(ref_chars))
cer = _edit_distance(ref_chars, hyp_chars) / Nc
return round(wer * 100, 2), round(cer * 100, 2)
def get_metrics_html():
return """
<div class="metrics-grid">
<div class="metric-card">
<h3>WER — Word Error Rate</h3>
<div class="formula">WER = ( <span>S</span> + <span>D</span> + <span>I</span> ) / <span>N</span></div>
<div class="chips">
<div class="chip"><b>S</b><small>замены</small></div>
<div class="chip"><b>D</b><small>удаления</small></div>
<div class="chip"><b>I</b><small>вставки</small></div>
<div class="chip"><b>N</b><small>слов в референсе</small></div>
</div>
</div>
<div class="metric-card">
<h3>CER — Character Error Rate</h3>
<div class="formula">CER = ( <span>S</span> + <span>D</span> + <span>I</span> ) / <span>N</span></div>
<div class="chips">
<div class="chip"><b>S, D, I</b><small>операции редактирования</small></div>
<div class="chip"><b>N</b><small>символов в референсе</small></div>
</div>
</div>
<div class="metric-card">
<h3>Нормализация</h3>
<p class="metric-text">Перед расчётом приводим текст к нижнему регистру и удаляем пунктуацию.</p>
</div>
<div class="metric-card">
<h3>Сравнение</h3>
<p class="metric-text">Сортировка по среднему WER по всем датасетам. Метрики отображаются в процентах.</p>
</div>
</div>
"""
def get_submit_html():
return """
<div class="submit-grid">
<div class="form-card">
<h3>Общая информация</h3>
<ul>
<li><b>Название модели</b> — коротко и понятно.</li>
<li><b>Ссылка</b> — HuggingFace, GitHub или сайт.</li>
<li><b>Лицензия</b> — MIT, Apache-2.0, GPL или Closed.</li>
</ul>
</div>
<div class="form-card">
<h3>Метрики</h3>
<p>Укажите WER и CER для всех датасетов в формате JSON. Значения — от 0 до 1.</p>
<pre class="code-block json">{
<span class="key">"Russian_LibriSpeech"</span>: { <span class="key">"wer"</span>: <span class="number">0.1234</span>, <span class="key">"cer"</span>: <span class="number">0.0567</span> },
<span class="key">"Common_Voice_Corpus_22.0"</span>: { <span class="key">"wer"</span>: <span class="number">0.2345</span>, <span class="key">"cer"</span>: <span class="number">0.0789</span> },
<span class="key">"Tone_Webinars"</span>: { <span class="key">"wer"</span>: <span class="number">0.3456</span>, <span class="key">"cer"</span>: <span class="number">0.0987</span> },
<span class="key">"Tone_Books"</span>: { <span class="key">"wer"</span>: <span class="number">0.4567</span>, <span class="key">"cer"</span>: <span class="number">0.1098</span> },
<span class="key">"Tone_Speak"</span>: { <span class="key">"wer"</span>: <span class="number">0.5678</span>, <span class="key">"cer"</span>: <span class="number">0.1209</span> },
<span class="key">"Sova_RuDevices"</span>: { <span class="key">"wer"</span>: <span class="number">0.6789</span>, <span class="key">"cer"</span>: <span class="number">0.1310</span> }
}</pre>
</div>
</div>
"""
|