File size: 2,766 Bytes
008bbdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6217eeb
008bbdb
4302579
415d5da
008bbdb
3e99bd6
008bbdb
e1ccc30
3e99bd6
283e79d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import csv
import gradio as gr
import glob
import pprint as pp
from sys import excepthook
from re import T
from urllib.parse import parse_qs, urlparse
import clip
import numpy as np
import requests
import torch
import io


from IPython.display import Image, display
from PIL import Image, ImageFont
import os
import cv2
import torch
import glob

# Model

def predict(text,img):
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
  img = cv2.imread(img)
  results = model(img1)  
  dirpath = tempfile.mkdtemp()
  results.crop(save_dir=dirpath)
  path= dirpath+'/crops/**/*.jpg'
  txtfiles = []
  for file in glob.glob(path):
      txtfiles.append(file)

  import ipyplot
  from PIL import Image
  l = []
  #keyList = list(range(len(txtfiles)))
  for filename in glob.glob(path):
    foo = Image.open(filename).convert('RGB')
    #resized_image = foo.resize((250,250))
    l.append(foo) 

  device = "cuda" if torch.cuda.is_available() else "cpu"
  model, preprocess = clip.load("ViT-B/32", device=device)

  images = torch.stack([preprocess(im) for im in l]).to(device)
  with torch.no_grad():
    image_features = model.encode_image(images)
    image_features /= image_features.norm(dim=-1, keepdim=True)

  image_features.cpu().numpy()

  image_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
  image_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()

  images = [preprocess(im) for im in l]
  image_input = torch.tensor(np.stack(images)).cuda()
  image_input -= image_mean[:, None, None]
  image_input /= image_std[:, None, None]
  with torch.no_grad():
      image_features = model.encode_image(image_input).float()
  image_features /= image_features.norm(dim=-1, keepdim=True)

  def get_top_N_semantic_similarity(similarity_list,N):
    results = zip(range(len(similarity_list)), similarity_list)
    results = sorted(results, key=lambda x: x[1],reverse= True)
    top_N_images = []
    scores=[]
    for index,score in results[:N]:
      scores.append(score)
      top_N_images.append(l[index])
    return scores,top_N_images

  search_query = "White car"

  with torch.no_grad():
      # Encode and normalize the description using CLIP
      text_encoded = model.encode_text(clip.tokenize(search_query).to(device))
      text_encoded /= text_encoded.norm(dim=-1, keepdim=True)

  similarity = text_encoded.cpu().numpy() @ image_features.cpu().numpy().T
  similarity = similarity[0]
  scores,imgs= get_top_N_semantic_similarity(similarity,N=1)
  #print ("scores ",scores)
  #ipyplot.plot_images(imgs,img_width=350)
  return imgs[0]

text = gr.inputs.Textbox(lines=5, label="Context")
#img = gr.inputs.Image()

#img = "image"



gr.Interface(predict, ["image", text], outputs="image", title='Search inside image').launch();