Spaces:
Running
Running
File size: 9,872 Bytes
738bdfa 864becb 738bdfa 864becb 738bdfa 864becb 738bdfa 864becb 738bdfa 864becb 738bdfa 864becb 738bdfa 864becb 738bdfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import rembg
import random
import torch
import numpy as np
from PIL import Image, ImageOps
import PIL
from typing import Any
import matplotlib.pyplot as plt
import io
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image)
return new_image
def remove_background(image: Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def random_crop(image, crop_scale=(0.8, 0.95)):
"""
随机裁切图片
image (numpy.ndarray): (H, W, C)。
crop_scale (tuple): (min_scale, max_scale)。
"""
assert isinstance(image, Image.Image), "iput must be PIL.Image.Image"
assert len(crop_scale) == 2 and 0 < crop_scale[0] <= crop_scale[1] <= 1
width, height = image.size
# 计算裁切的高度和宽度
crop_width = random.randint(int(width * crop_scale[0]), int(width * crop_scale[1]))
crop_height = random.randint(int(height * crop_scale[0]), int(height * crop_scale[1]))
# 随机选择裁切的起始点
left = random.randint(0, width - crop_width)
top = random.randint(0, height - crop_height)
# 裁切图片
cropped_image = image.crop((left, top, left + crop_width, top + crop_height))
return cropped_image
def get_crop_images(img, num=3):
cropped_images = []
for i in range(num):
cropped_images.append(random_crop(img))
return cropped_images
def background_preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def remove_outliers_and_average(tensor, threshold=1.5):
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
q1 = torch.quantile(tensor, 0.25)
q3 = torch.quantile(tensor, 0.75)
iqr = q3 - q1
lower_bound = q1 - threshold * iqr
upper_bound = q3 + threshold * iqr
non_outliers = tensor[(tensor >= lower_bound) & (tensor <= upper_bound)]
if len(non_outliers) == 0:
return tensor.mean().item()
return non_outliers.mean().item()
def remove_outliers_and_average_circular(tensor, threshold=1.5):
assert tensor.dim() == 1, "dimension of input Tensor must equal to 1"
# 将角度转换为二维平面上的点
radians = tensor * torch.pi / 180.0
x_coords = torch.cos(radians)
y_coords = torch.sin(radians)
# 计算平均向量
mean_x = torch.mean(x_coords)
mean_y = torch.mean(y_coords)
differences = torch.sqrt((x_coords - mean_x) * (x_coords - mean_x) + (y_coords - mean_y) * (y_coords - mean_y))
# 计算四分位数和 IQR
q1 = torch.quantile(differences, 0.25)
q3 = torch.quantile(differences, 0.75)
iqr = q3 - q1
# 计算上下限
lower_bound = q1 - threshold * iqr
upper_bound = q3 + threshold * iqr
# 筛选非离群点
non_outliers = tensor[(differences >= lower_bound) & (differences <= upper_bound)]
if len(non_outliers) == 0:
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
mean_angle = (mean_angle + 360) % 360
return mean_angle # 如果没有非离群点,返回 None
# 对非离群点再次计算平均向量
radians = non_outliers * torch.pi / 180.0
x_coords = torch.cos(radians)
y_coords = torch.sin(radians)
mean_x = torch.mean(x_coords)
mean_y = torch.mean(y_coords)
mean_angle = torch.atan2(mean_y, mean_x) * 180.0 / torch.pi
mean_angle = (mean_angle + 360) % 360
return mean_angle
def scale(x):
# print(x)
# if abs(x[0])<0.1 and abs(x[1])<0.1:
# return x*5
# else:
# return x
return x*3
def get_proj2D_XYZ(phi, theta, gamma):
x = np.array([-1*np.sin(phi)*np.cos(gamma) - np.cos(phi)*np.sin(theta)*np.sin(gamma), np.sin(phi)*np.sin(gamma) - np.cos(phi)*np.sin(theta)*np.cos(gamma)])
y = np.array([-1*np.cos(phi)*np.cos(gamma) + np.sin(phi)*np.sin(theta)*np.sin(gamma), np.cos(phi)*np.sin(gamma) + np.sin(phi)*np.sin(theta)*np.cos(gamma)])
z = np.array([np.cos(theta)*np.sin(gamma), np.cos(theta)*np.cos(gamma)])
x = scale(x)
y = scale(y)
z = scale(z)
return x, y, z
# 绘制3D坐标轴
def draw_axis(ax, origin, vector, color, label=None):
ax.quiver(origin[0], origin[1], vector[0], vector[1], angles='xy', scale_units='xy', scale=1, color=color)
if label!=None:
ax.text(origin[0] + vector[0] * 1.1, origin[1] + vector[1] * 1.1, label, color=color, fontsize=12)
def matplotlib_2D_arrow(angles, rm_bkg_img):
fig, ax = plt.subplots(figsize=(8, 8))
# 设置旋转角度
phi = np.radians(angles[0])
theta = np.radians(angles[1])
gamma = np.radians(-1*angles[2])
w, h = rm_bkg_img.size
if h>w:
extent = [-5*w/h, 5*w/h, -5, 5]
else:
extent = [-5, 5, -5*h/w, 5*h/w]
ax.imshow(rm_bkg_img, extent=extent, zorder=0, aspect ='auto') # extent 设置图片的显示范围
origin = np.array([0, 0])
# 旋转后的向量
rot_x, rot_y, rot_z = get_proj2D_XYZ(phi, theta, gamma)
# draw arrow
arrow_attr = [{'point':rot_x, 'color':'r', 'label':'front'},
{'point':rot_y, 'color':'g', 'label':'right'},
{'point':rot_z, 'color':'b', 'label':'top'}]
if phi> 45 and phi<=225:
order = [0,1,2]
elif phi > 225 and phi < 315:
order = [2,0,1]
else:
order = [2,1,0]
for i in range(3):
draw_axis(ax, origin, arrow_attr[order[i]]['point'], arrow_attr[order[i]]['color'], arrow_attr[order[i]]['label'])
# draw_axis(ax, origin, rot_y, 'g', label='right')
# draw_axis(ax, origin, rot_z, 'b', label='top')
# draw_axis(ax, origin, rot_x, 'r', label='front')
# 关闭坐标轴和网格
ax.set_axis_off()
ax.grid(False)
# 设置坐标范围
ax.set_xlim(-5, 5)
ax.set_ylim(-5, 5)
def figure_to_img(fig):
with io.BytesIO() as buf:
fig.savefig(buf, format='JPG', bbox_inches='tight')
buf.seek(0)
image = Image.open(buf).copy()
return image
from render import render, Model
import math
axis_model = Model("./axis.obj", texture_filename="./axis.png")
def render_3D_axis(phi, theta, gamma):
radius = 240
# camera_location = [radius * math.cos(phi), radius * math.sin(phi), radius * math.tan(theta)]
# print(camera_location)
camera_location = [-1*radius * math.cos(phi), -1*radius * math.tan(theta), radius * math.sin(phi)]
img = render(
# Model("res/jinx.obj", texture_filename="res/jinx.tga"),
axis_model,
height=512,
width=512,
filename="tmp_render.png",
cam_loc = camera_location
)
img = img.rotate(gamma)
return img
def overlay_images_with_scaling(center_image: Image.Image, background_image, target_size=(512, 512)):
"""
调整前景图像大小为 512x512,将背景图像缩放以适配,并中心对齐叠加
:param center_image: 前景图像
:param background_image: 背景图像
:param target_size: 前景图像的目标大小,默认 (512, 512)
:return: 叠加后的图像
"""
# 确保输入图像为 RGBA 模式
if center_image.mode != "RGBA":
center_image = center_image.convert("RGBA")
if background_image.mode != "RGBA":
background_image = background_image.convert("RGBA")
# 调整前景图像大小
center_image = center_image.resize(target_size)
# 缩放背景图像,确保其适合前景图像的尺寸
bg_width, bg_height = background_image.size
# 按宽度或高度等比例缩放背景
scale = target_size[0] / max(bg_width, bg_height)
new_width = int(bg_width * scale)
new_height = int(bg_height * scale)
resized_background = background_image.resize((new_width, new_height))
# 计算需要的填充量
pad_width = target_size[0] - new_width
pad_height = target_size[0] - new_height
# 计算上下左右的 padding
left = pad_width // 2
right = pad_width - left
top = pad_height // 2
bottom = pad_height - top
# 添加 padding
resized_background = ImageOps.expand(resized_background, border=(left, top, right, bottom), fill=(255,255,255,255))
# 将前景图像叠加到背景图像上
result = resized_background.copy()
result.paste(center_image, (0, 0), mask=center_image)
return result
|