File size: 1,297 Bytes
06aa192
1abaddd
e234713
06aa192
e234713
ea1c882
8fa3e65
06aa192
ea1c882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa192
ea1c882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06aa192
 
 
 
 
 
9dc65e9
ea1c882
 
1abaddd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from pathlib import Path

import torch
import gradio as gr
from torch import nn


LABELS = Path('class_names.txt').read_text().splitlines()

model = nn.Sequential(
    nn.Conv2d(1, 32, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Conv2d(32, 64, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Conv2d(64, 128, 3, padding='same'),
    nn.ReLU(),
    nn.MaxPool2d(2),
    nn.Flatten(),
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.Linear(256, len(LABELS)),
)
state_dict = torch.load('pytorch_model.bin', map_location='cpu')
model.load_state_dict(state_dict, strict=False)
model.eval()

def predict(im):
    x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.

    with torch.no_grad():
        out = model(x)

    probabilities = torch.nn.functional.softmax(out[0], dim=0)

    values, indices = torch.topk(probabilities, 5)

    return {LABELS[i]: v.item() for i, v in zip(indices, values)}

interface = gr.Interface(
    predict, 
    inputs="sketchpad", 
    outputs='label', 
    theme="huggingface", 
    title="Sketch Recognition", 
    description="Start sketching for the machine to guess in real time!", 
    article = "<p style='text-align: center'>Sketch Recognition | Demo Model</p>",
    live=True)
interface.launch(debug=True)