Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,906 Bytes
0c14fd5 bac0d32 61bd18b 6ca2579 61bd18b ab7be96 374c3a9 7d0d1f0 8d23ca8 ab7be96 8d23ca8 07c6a04 a28e78a ab7be96 a28e78a 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 bac0d32 7e420e5 ab7be96 a28e78a ab7be96 a28e78a ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 efc27db b1ae694 efc27db b1ae694 b652dd0 0a41bc2 b652dd0 b1ae694 0a41bc2 b1ae694 b652dd0 0a41bc2 b1ae694 0a41bc2 b652dd0 0a41bc2 efc27db 0a41bc2 07c6a04 b652dd0 07c6a04 ab7be96 07c6a04 ab7be96 07c6a04 9b08739 ab7be96 9b08739 ab7be96 9b08739 07c6a04 ab7be96 07c6a04 09f1eaa 07c6a04 ab7be96 a28e78a 006b72a 07c6a04 09f1eaa 07c6a04 09f1eaa ab7be96 09f1eaa 07c6a04 eef733b debb23f a6d5f16 a28e78a ab7be96 14a04f5 debb23f 8d23ca8 efc27db 07c6a04 bac0d32 ab7be96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
import uuid
import gradio as gr
import spaces
from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine
def load_model(model_name, enable_video_sys=False, pab_threshold=[100, 850], pab_range=2):
pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range)
config = CogVideoXConfig(model_name, enable_pab=enable_video_sys, pab_config=pab_config)
engine = VideoSysEngine(config)
return engine
def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0):
video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0]
unique_filename = f"{uuid.uuid4().hex}.mp4"
output_path = os.path.join("./.tmp_outputs", unique_filename)
engine.save_video(video, output_path)
return output_path
@spaces.GPU(duration=200)
def generate_vs(
model_name,
prompt,
num_inference_steps,
guidance_scale,
threshold_start,
threshold_end,
gap,
progress=gr.Progress(track_tqdm=True),
):
threshold = [int(threshold_end), int(threshold_start)]
gap = int(gap)
engine = load_model(model_name, enable_video_sys=True, pab_threshold=threshold, pab_range=gap)
video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
return video_path
css = """
body {
font-family: Arial, sans-serif;
line-height: 1.6;
color: #333;
margin: 0 auto;
padding: 20px;
}
.container {
display: flex;
flex-direction: column;
gap: 10px;
}
.row {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
.column {
flex: 1;
min-width: 0;
}
.video-output {
width: 100%;
max-width: 720px;
height: auto;
margin: 0 auto;
}
.server-status {
margin-top: 5px;
padding: 5px;
font-size: 0.8em;
}
.server-status h4 {
margin: 0 0 3px 0;
font-size: 0.9em;
}
.server-status .row {
margin-bottom: 2px;
}
.server-status .textbox {
min-height: unset !important;
}
.server-status .textbox input {
padding: 1px 5px !important;
height: 20px !important;
font-size: 0.9em !important;
}
.server-status .textbox label {
margin-bottom: 0 !important;
font-size: 0.9em !important;
line-height: 1.2 !important;
}
.server-status .textbox {
gap: 0 !important;
}
.server-status .textbox input {
margin-top: -2px !important;
}
@media (max-width: 768px) {
.row {
flex-direction: column;
}
.column {
width: 100%;
}
}
.video-output {
width: 100%;
height: auto;
}
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
"""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
VideoSys for CogVideoX🤗
</div>
<div style="text-align: center; font-size: 15px;">
🌐 Github: <a href="https://github.com/NUS-HPC-AI-Lab/VideoSys">https://github.com/NUS-HPC-AI-Lab/VideoSys</a><br>
⚠️ This demo is for academic research and experiential use only.
Users should strictly adhere to local laws and ethics.<br>
💡 This demo only demonstrates single-device inference. To experience the full power of VideoSys, please deploy it with multiple devices.<br><br>
</div>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", value="Sunset over the sea.", lines=2)
with gr.Column():
gr.Markdown("**Generation Parameters**<br>")
with gr.Row():
model_name = gr.Radio(["THUDM/CogVideoX-2b"], label="Model Type", value="THUDM/CogVideoX-2b")
with gr.Row():
num_inference_steps = gr.Slider(label="Inference Steps", maximum=50, value=50)
guidance_scale = gr.Slider(label="Guidance Scale", value=6.0, maximum=15.0)
gr.Markdown("**Pyramid Attention Broadcast Parameters**<br>")
with gr.Row():
pab_range = gr.Slider(
label="Broadcast Range",
value=2,
step=1,
minimum=1,
maximum=4,
info="Attention broadcast range.",
)
pab_threshold_start = gr.Slider(
label="Start Timestep",
minimum=500,
maximum=1000,
value=850,
step=1,
info="Broadcast start timestep (1000 is the fisrt).",
)
pab_threshold_end = gr.Slider(
label="End Timestep",
minimum=0,
maximum=500,
step=1,
value=100,
info="Broadcast end timestep (0 is the last).",
)
with gr.Row():
generate_button_vs = gr.Button("⚡️ Generate Video with VideoSys")
with gr.Column():
with gr.Row():
video_output_vs = gr.Video(label="CogVideoX with VideoSys", width=720, height=480)
generate_button_vs.click(
generate_vs,
inputs=[
model_name,
prompt,
num_inference_steps,
guidance_scale,
pab_threshold_start,
pab_threshold_end,
pab_range,
],
outputs=[video_output_vs],
concurrency_id="gen",
concurrency_limit=1,
)
if __name__ == "__main__":
demo.queue(max_size=10, default_concurrency_limit=1)
demo.launch()
|