Spaces:
Runtime error
Runtime error
File size: 13,506 Bytes
87854ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
""" This is NEW release of DreamDrop V2.0! Features added: 1. Can generate up to 10 images at a time 2. Image Upscaler (x8) appeared 3. Integrated MagicPrompt (for Stable Diffusion and for Dall•E) 4. Added generation parameters menu (Steps, Samplers and CFG Sсale) Enjoy! """ import numpy as np import gradio as gr import requests import time import json import base64 import os from io import BytesIO import PIL from PIL.ExifTags import TAGS import html import re from MagicPrompt import MagicPromptSD from Upscaler import upscale_image batch_count = 1 batch_size = 1 i2i_batch_count = 1 i2i_batch_size = 1 class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def generate(self, params): response = self._post(f"{self.base}/sd/generate", params) return response.json() def transform(self, params): response = self._post(f"{self.base}/sd/transform", params) return response.json() def controlnet(self, params): response = self._post(f"{self.base}/sd/controlnet", params) return response.json() def get_job(self, job_id): response = self._get(f"{self.base}/job/{job_id}") return response.json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) return job_result def list_models(self): response = self._get(f"{self.base}/sd/models") return response.json() def list_samplers(self): response = self._get(f"{self.base}/sd/samplers") return response.json() def _post(self, url, params): headers = { **self.headers, "Content-Type": "application/json" } response = requests.post(url, headers=headers, data=json.dumps(params)) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def _get(self, url): response = requests.get(url, headers=self.headers) if response.status_code != 200: raise Exception(f"Bad Prodia Response: {response.status_code}") return response def image_to_base64(image): # Convert the image to bytes buffered = BytesIO() image.save(buffered, format="PNG") # You can change format to PNG if needed # Encode the bytes to base64 img_str = base64.b64encode(buffered.getvalue()) return img_str.decode('utf-8') # Convert bytes to string def remove_id_and_ext(text): text = re.sub(r'\[.*\]$', '', text) extension = text[-12:].strip() if extension == "safetensors": text = text[:-13] elif extension == "ckpt": text = text[:-4] return text def get_data(text): results = {} patterns = { 'prompt': r'(.*)', 'negative_prompt': r'Negative prompt: (.*)', 'steps': r'Steps: (\d+),', 'seed': r'Seed: (\d+),', 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', 'model': r'Model:\s*([^\s,]+)', 'cfg_scale': r'CFG scale:\s*([\d\.]+)', 'size': r'Size:\s*([0-9]+x[0-9]+)' } for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']: match = re.search(patterns[key], text) if match: results[key] = match.group(1) else: results[key] = None if results['size'] is not None: w, h = results['size'].split("x") results['w'] = w results['h'] = h else: results['w'] = None results['h'] = None return results def send_to_txt2img(image): result = {tabs: gr.Tabs.update(selected="t2i")} try: text = image.info['parameters'] data = get_data(text) result[prompt] = gr.update(value=data['prompt']) result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update() result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update() result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update() result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update() result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update() result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update() result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update() if model in model_names: result[model] = gr.update(value=model_names[model]) else: result[model] = gr.update() return result except Exception as e: print(e) result[prompt] = gr.update() result[negative_prompt] = gr.update() result[steps] = gr.update() result[seed] = gr.update() result[cfg_scale] = gr.update() result[width] = gr.update() result[height] = gr.update() result[sampler] = gr.update() result[model] = gr.update() return result prodia_client = Prodia(api_key=os.environ.get("API_X_KEY")) # You can get the API key on https://docs.prodia.com/reference/getting-started-guide model_list = prodia_client.list_models() model_names = {} for model_name in model_list: name_without_ext = remove_id_and_ext(model_name) model_names[name_without_ext] = model_name def txt2img(prompt, negative_prompt, model, sampler, steps, cfg_scale, width, height, num_images): generated_images = [] for _ in range(num_images): result = prodia_client.generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": -1 }) job = prodia_client.wait(result) generated_images.append(job["imageUrl"]) return generated_images def img2img(input_image, denoising, prompt, negative_prompt, model, sampler, steps, cfg_scale, i2i_width, i2i_height): result = prodia_client.transform({ "imageData": image_to_base64(input_image), "denoising_strength": denoising, "prompt": prompt, "negative_prompt": negative_prompt, "model": i2i_model.value, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": i2i_width, "height": i2i_height, "seed": -1 }) job = prodia_client.wait(result) return job["imageUrl"] with gr.Blocks(css="style.css", theme="zenafey/prodia-web") as demo: gr.Markdown(""" # 🥏 DreamDrop ```V2.0``` """) with gr.Tabs() as tabs: with gr.Tab("Text-to-Image", id='t2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2) negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1) text_button = gr.Button("Generate", variant='primary') with gr.Row(): with gr.Column(scale=5): images_output = gr.Gallery(label="Result Image(s)", num_rows=1, num_cols=5, scale=1, allow_preview=True, preview=True) with gr.Row(): with gr.Accordion("⚙️ Settings", open=False): with gr.Column(scale=1): model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Model", choices=prodia_client.list_models()) with gr.Column(scale=1): sampler = gr.Dropdown(label="Sampler", choices=prodia_client.list_samplers(), value="DPM++ SDE", interactive=True) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=25, interactive=True) cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, interactive=True) width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8) height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8) num_images = gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Image Count", interactive=True) text_button.click(txt2img, inputs=[prompt, negative_prompt, model, sampler, steps, cfg_scale, width, height, num_images], outputs=images_output) with gr.Tab("Image-to-Image", id='i2i'): with gr.Row(): with gr.Column(scale=6): with gr.Column(scale=1): i2i_image_input = gr.Image(label="Input Image", type="pil", interactive=True) with gr.Column(scale=6, min_width=600): i2i_prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", lines=2) i2i_negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, value="text, blurry, fuzziness") with gr.Column(): i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate") with gr.Column(scale=1): i2i_image_output = gr.Image(label="Result Image(s)") with gr.Row(): with gr.Accordion("⚙️ Settings", open=False): with gr.Column(scale=1): i2i_model = gr.Dropdown(interactive=True, value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Model", choices=prodia_client.list_models()) with gr.Column(scale=1): i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1) sampler = gr.Dropdown(label="Sampler", choices=prodia_client.list_samplers(), value="DPM++ SDE", interactive=True) steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=25, interactive=True) cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, interactive=True) i2i_width = gr.Slider(label="↔️ Width", maximum=1024, value=768, step=8) i2i_height = gr.Slider(label="↕️ Height", maximum=1024, value=768, step=8) i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt, model, sampler, steps, cfg_scale, i2i_width, i2i_height], outputs=i2i_image_output) with gr.Tab("Upscaler"): gr.Markdown(""" # Upscaler ```x8``` """) radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8], value=2) gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image")) with gr.Tab("PNG-Info"): def plaintext_to_html(text, classname=None): content = "<br>\n".join(html.escape(x) for x in text.split('\n')) return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>" def get_exif_data(image): items = image.info info = '' for key, text in items.items(): info += f""" <div> <p><b>{plaintext_to_html(str(key))}</b></p> <p>{plaintext_to_html(str(text))}</p> </div> """.strip()+"\n" if len(info) == 0: message = "Nothing found in the image." info = f"<div><p>{message}<p></div>" return info with gr.Row(): gr.Markdown(""" # PNG-Info """) with gr.Column(): image_input = gr.Image(type="pil", label="Input Image", interactive=True) with gr.Column(): exif_output = gr.HTML(label="EXIF Data") image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output) with gr.Tab("MagicPrompt"): gr.Markdown(""" # MagicPrompt """) gr.Interface(fn=MagicPromptSD, inputs=[gr.Radio(label="Prompt Model", choices=["Gustavosta/MagicPrompt-Stable-Diffusion", "Gustavosta/MagicPrompt-Dalle"], value="Gustavosta/MagicPrompt-Stable-Diffusion"), gr.Textbox(label="Enter your idea")], outputs=gr.Textbox(label="Output Prompt", interactive=False), allow_flagging='never') demo.launch(show_api=False) |