Spaces:
No application file
No application file
File size: 2,687 Bytes
a005360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
!pip install datasets pip install transformers[torch] from datasets import load_dataset, load_metric raw_datasets = load_dataset("wiki_qa") dataset = raw_datasets['test'].train_test_split(train_size=0.67, seed=42) raw_datasets["validation"]=dataset.pop("test") raw_datasets['test']= dataset['train'] print(raw_datasets) raw_datasets.set_format('pandas') print('n\n\n\ntraining_labels:\n', raw_datasets['train']['label'].value_counts(),'\n\n', 'validation_labels:\n', raw_datasets['validation']['label'].value_counts(),'\n\n', 'testing_labels:\n',raw_datasets['test']['label'].value_counts()) raw_datasets.reset_format() from transformers import GPT2Config, GPT2ForSequenceClassification, GPT2Tokenizer # Load the GPT-2 tokenizer tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # Load the GPT-2 configuration config = GPT2Config.from_pretrained("gpt2") # Modify the configuration for sequence classification config.num_labels = 2 # Specify the number of classes for your classification task config.pad_token_id = tokenizer.eos_token_id # Initialize the GPT-2 model for sequence classification model = GPT2ForSequenceClassification.from_pretrained("gpt2", config=config) tokenizer.pad_token = tokenizer.eos_token def tokenize_function(examples): # Tokenize the question and answer text question_inputs = tokenizer(examples['question'], padding='max_length', truncation=True, return_tensors='pt', max_length=800) answer_inputs = tokenizer(examples['answer'], padding='max_length', truncation=True, return_tensors='pt', max_length=800) # Combine question and answer inputs inputs = { 'input_ids': question_inputs['input_ids'], 'attention_mask': question_inputs['attention_mask'], 'answer_input_ids': answer_inputs['input_ids'], 'answer_attention_mask': answer_inputs['attention_mask'], } return inputs # Tokenize the train, test, and validation datasets tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) from transformers import Trainer, TrainingArguments # Training arguments training_args = TrainingArguments( output_dir="./output", num_train_epochs=3, evaluation_strategy="steps", save_total_limit=2, per_device_train_batch_size=4, per_device_eval_batch_size=4, save_steps=200, eval_steps=200, logging_steps=200, fp16=True, ) # Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets['train'], eval_dataset=tokenized_datasets['validation'], ) # Train the model trainer.train() # Evaluate on the test dataset results = trainer.evaluate(tokenized_datasets['test']) print(results) |