File size: 3,905 Bytes
d356519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import streamlit as st
import torch
from auto_gptq import AutoGPTQForCausalLM
from pdf2image import convert_from_path
from transformers import AutoTokenizer, TextStreamer, pipeline
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.prompts import PromptTemplate
from langchain.chains import RetrievalQA

os.system('sudo apt-get install -y poppler-utils')

DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"

meta_images = convert_from_path("Medical_Book.pdf", dpi=88)

loader = PyPDFLoader("Medical_Book.pdf")
docs = loader.load()

embeddings = HuggingFaceInstructEmbeddings(
    model_name="hkunlp/instructor-large", model_kwargs={"device": DEVICE}
)

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
texts = text_splitter.split_documents(docs)

db = Chroma.from_documents(texts, embeddings, persist_directory="db")

model_name_or_path = "TheBloke/Llama-2-13B-chat-GPTQ"
model_basename = "model"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(
    model_name_or_path,
    revision="gptq-4bit-128g-actorder_True",
    model_basename=model_basename,
    use_safetensors=True,
    trust_remote_code=True,
    inject_fused_attention=False,
    device=DEVICE,
    quantize_config=None,
)

DEFAULT_SYSTEM_PROMPT = """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
""".strip()


def generate_prompt(prompt: str, system_prompt: str = DEFAULT_SYSTEM_PROMPT) -> str:
    return f"""
[INST] <>
{system_prompt}
<>

{prompt} [/INST]
""".strip()

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

text_pipeline = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=1024,
    temperature=0,
    top_p=0.95,
    repetition_penalty=1.15,
    streamer=streamer,
)

llm = HuggingFacePipeline(pipeline=text_pipeline, model_kwargs={"temperature": 0})

SYSTEM_PROMPT = "Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer."

template = generate_prompt(
    """
{context}

Question: {question}
""",
    system_prompt=SYSTEM_PROMPT,
)

prompt = PromptTemplate(template=template, input_variables=["context", "question"])

qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=db.as_retriever(search_kwargs={"k": 2}),
    return_source_documents=True,
    chain_type_kwargs={"prompt": prompt},
)

# result = qa_chain("what is  Doppler ultrasonography?")
# print(result["source_documents"][0].page_content)
st.title("Medical Chatbot")

if "history" not in st.session_state:
    st.session_state.history = []

user_input = st.text_input("Ask a question:", key="input")

if user_input:
    result = qa_chain({"question": user_input})
    st.session_state.history.append({"question": user_input, "answer": result["result"]})

for entry in st.session_state.history:
    st.write(f"**Question:** {entry['question']}")
    st.write(f"**Answer:** {entry['answer']}")

if st.button("Clear History"):
    st.session_state.history = []